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Preface

Since the first International Permafrost Conference
convened in 1963, we have sustained an international
scientific and engineering collaborative effort until we now
are immersed in this, the Ninth International Conference
on Permafrost (NICOP). Considerable change has occurred
over the past 45 years, resulting in heightened interest
in the permafrost environment and understanding of its
many aspects. Participation by engineers and scientists
in advancing our knowledge of permafrost as a thermally
impacted medium has continued to grow in the wake of both
resource development and climate change.

The University of Alaska Fairbanks (America’s Arctic
University) is an excellent choice for the location of this
conference. Permafrost is ubiquitous in Interior Alaska,
and it influences many aspects of our society. Our local
field trips are arranged around some of the most interesting
phenomena here in the zone of discontinuous permafrost,
including the world famous Permafrost Tunnel, the Trans
Alaska Oil Pipeline, evidence of anthropogenic impacts
on permafrost, and thermokarsting of warm permafrost.
Fairbanks is also a good starting point for trips to other parts
of Alaska, including the North Slope, Seward Peninsula,
Denali National Park (Mount McKinley), and many other
adventures. We have also taken this opportunity to offer
courses related to the permafrost environment for high
school and elementary teachers, advanced graduate students,
and working professionals.

The University of Alaska Fairbanks hosted the Fourth
International Conference on Permafrost in 1983. It was at
this meeting that the International Permafrost Association
(IPA) was formally established. IPA members are truly
pleased with the strong international flavor of this year’s
conference, with approximately 30 countries participating.

IPA’s uninterrupted activities over the past 25 years are
partially responsible for this concerted effort to expand our
understanding of the permafrost environment, both spatially
and temporally. It is also, however, abundantly clear that
much of our current interest in this environment is driven by
climate change.

Currently, many aspects of permafrost research are
receiving considerable attention. These include carbon
release into the atmosphere, discharge from catchments
dominated with permafrost, the role of gas hydrates in cold
environments, degrading permafrost and thermokarsting,
infrastructure design in a changing environment, and the over-
arching issue of climate change on this thermally sensitive
environment. It is essential that our scientific and engineering
communities help our societies adapt to living and working
on warming permafrost. Permafrost degradation will affect
all aspects of life in the high latitudes and high elevations.
We must anticipate the changes in ecology, hydrology, and
infrastructure construction that will accompany degradation
of permafrost with a warming climate. That is the challenge
facing permafrost scientists and engineers. It is our hope that
by sharing our knowledge and understanding, we may better
serve our nations and people.

Enjoy the conference. We hope you will go home with
increased knowledge and an invigorated appetite for
expanding our understanding of the environment we call
“permafrost.”

—Douglas L. Kane

Water and Environmental Research Center, Institute of
Northern Engineering

—Larry D. Hinzman

International Arctic Research Center
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Abstract

In the seasonally frozen ground regions in Gansu Province, Northwestern China, highway embankment and pavement
have frequently been damaged due to the impacts of frost and salt heaving and thaw settlement, generally in the
forms of pavement cracks and break-ups. Mechanisms and mitigative measures for these hazards have been puzzling
geocryologists and road engineers. In this research repeated freeze-thaw experiments of saline soils sampled from the
subgrade at highway segments with frequent and repeated damages, at periodically fluctuating temperatures, were
conducted in order to investigate the relationship of freeze-thaw processes in saline foundation soils with the strengths
and impacts of soil salinity on the stability of foundation soils. The experimental results showed that salinity and
frost susceptibility had great impact on the deformation process in saline soils. The deformation of saline soil is
accumulative within limited freeze-thaw cycles with sufficient water supply. Elevation of the embankment height,
drainage, and salinity controls in subgrade and embankment fills were proposed to cost-effectively mitigate frost
and salt heaving and subsequent thaw-weakening during highway design, construction, and maintenance periods in
regions affected by seasonally frozen saline soils.

Keywords: frost action; frost heaving; highway foundations; saline soil; seasonally frozen ground; thaw-weakening.

Introduction

The area of salinized soils is 1.91 x 10° km?, accounting
for about 2.0% of the total land territory in China. It is
distributed mainly in the arid, semi-arid, and cold regions.
Gansu Province has a saline soil area of 1.16 x 10* km?, one
of the largest in China. The major centers for the distribution
of saline soils, such as Dunhuang, Yumen, Jiuquan, Linze,
Yongchang and Mingqing, are located in the Hexi Corridor in
Central and Western Gansu Province (Fig. 1) (Qiu et al. 1996,
Xu et al. 1999). In addition, salts in the soil-water system
can be partially crystallized and excluded, and migrate along
the thermal, pressure, and moisture gradients.

Foundation soils can be significantly and differentially
expanded from salt heaving, resulting in serious damages
to roads and other buildings (Wu & Zhu, 2002). Studies on
frost and salt heaving of saline soils have been intensively
conducted both in laboratory tests and in sifu observations
in the field for many years. Xu et al. (1992) studied water
and ion migration and its resultant deformation of soils in
an experiment using the frozen Kaolin soil supplied with
the NaCl solution. The result indicated that the deformation

in the frozen Kaolin was mainly in the form of frost
heaving. Qiu (1986) studied the processes of ion and water
migration. He proposed that some ion types of salt for
restraining frost heave. Fei et al. (1994) studied salt-heave
characteristics of Xi’an Loess, and proposed that the salt-
heave ratio was minimum for soils with 3% Na, SO, and 1.8
g/cm? initial dry density. He further concluded that the salt
heave of saline soil with Na,SO, varied in a form of two
parabolas with initial dry density and water content. Chen
et al. (1988) suggested that the salt-heave ratio of silt with
Na,SO, changed exponentially with the cooling rate and
the increasing overburden pressures. Xu et al. (1995, 1999)
systemically studied frost and salt heave of soils, including
changes of unfrozen water content, migration of moisture
and ions, deformation due to salt heaving and its influencing
factors, and coupled models for the prediction of frost
and salt heaving. Wu & Zhu (2002) performed salt heave
experiments of coarse-grained soil with Na_ SO, to analyze
the processes of salt heave that affect the stability of building
foundations. Results showed that the coarse-grained soil with
a salt concentration layer could result in abrupt salt heaving
that damaged engineering infrastructures. Liu et al. (2005)
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Figure 1. Map of Gansu Province with main areas mentioned in
paper.

carried out some experiments using soils with sulphates to
measure the salt heave force and rate under a single factor
and to study heave mechanisms. Other researchers mainly
studied properties such as strength and deformation of saline
soils, (Ogata et al. 1982, Sego et al. 1982), frost heave of
saline soils (Chamberlian, 1983), the effect of salt enrichment
on unfrozen water (Banin & Anderson, 1974), and water and
ion migration in an open system (Ershov et al. 1989, 1991).
In this paper, freeze-thaw experiments of typical soils, taken
from the subgrade of highways where damages frequently
occurred, have been conducted to study the characteristics
of deformation processes due to the salt and frost heave
and subsequent thaw weakening and settlement in Gansu
Province. On the basis of this experimental study, some
mitigative measures had been proposed to improve the
stability of embankment and pavement soils in saline soil
regions.

Experimental Process

Specimens for laboratory testing

Four soil specimens were studied in repeated freeze-thaw
experiments in order to study deformation characteristics
and processes caused by frost heave, salt expansion, and
subsequent thaw settlement and weakening.

After careful field investigations on the damages of
highway foundation soils in Gansu Province, northwestern
China, three specimens of saline soils were sampled from
road sections with severe damage in the embankment and
pavement due to salt and frost heave. Sample No. 1 of silt
was taken in Gaotai County along National Highway No.
109 (Fig. 1). Its field water content was 23.10% and salinity
was very high. Salt crystals could be observed clearly.
Numerous longitudinal and transverse cracks were found on
the pavement where the specimen was taken. Sample No. 2 of
silty clay was taken between Jiuquan to Jinta along National
Highway No. 214. The climate is more arid in the area of
Sample No. 2. The field water content was 5.18%. Sample
No. 3 of fine silty sand was taken from the toe of the right
side protection slope of National Highway No. 214 in the
proximity of Jinta County, where visible white salt crystals

Table 1. Liquid and plastic limits, plastic index, and salinity of
three saline soil specimens and the reference sample.

Liquid limit Plastic Plastic Salinity
Sample (%) limit (%) index (%)
No. 1 21.1 13.8 7.3 9.1
No. 2 27.9 17.9 10 2.79
No. 3 19.9 10.3 6.6 6.14
No. 4 28.2 19.1 15 0.15
2
.3
—38
K :
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Figure 2. Diagram of experimental system for freeze-thaw testing
of saline and reference soil specimens. Notes: (a) Photo of freeze-
thaw experiment system; and (b) Simplified model of components
in the experiment system. 1-Deformation sensor, 2-Top plate,
3-Insulation layer, 4-Bottom plate, 5-Cooling bath, 6-Temperature
sensors, 7-Water supply, and 8-Testing sample.

occur on the adjacent ground surface. Field water content
was 9.53%. In addition, another soil specimen, Sample No.
4 of clay, was obtained in the middle of the Magqii to Luqii
section along National Highway No. 213, at an elevation of
about 3500 m and with a cold climate. It was tested as a
reference specimen because of very low salinity (Table 1).

The basic parameters, such as liquid and plastic limits,
plastic index, and salinity, of the four specimens were
measured in the State Key Laboratory of Frozen Soil
Engineering, CAREERI, Chinese Academy of Science
(Table 1). The ions in the tested saline soils mainly include
CI,NO*, SO,*, Na*, Ca*", Mg*", K*.



LIET AL. 1057

Sample preparation

Soil samples taken and sealed in the field were placed
in polymethyl methacrylate tubes, layer by layer, and
compacted to a certain density. Soils were converted to
testing specimens. Cylinder specimens were 100 mm high
with a diameter of 101 mm. They were consolidated for 24
hours at room temperature for uniform moisture distribution.
Then the repeated freeze-thaw tests were carried out.

Laboratory equipment

Laboratory equipment for performing repeated freeze-
thaw tests on the four soil specimens was developed by the
State Key Laboratory of Frozen Soils Engineering (Fig. 2).

The polymethyl methacrylate tube was filled with a soil
specimen. The temperatures at the top and bottom plates
were controlled by cooling baths. The temperature at the
bottom plate remained at +1°C. The exterior of the tube was
insulated. The experiment system was put into an insulated
box with a constant temperature at +1°C.

Every 30 minutes, the temperature at each vertical interval
of 10 cm in the tested soil columns was measured by thermal-
susceptible resistance sensors with a precision of +0.2°C.
The deformation in the soil columns was measured by a
deformation sensor with a precision of +0.01mm at the top
of the soil columns. The temperature at the top plate varied
according to a sinusoidal function as follows:

. 2
T=-25+7.5smn(—t 1
(72 ) ey

Water was sucked up into the soil columns through the
bottom plate due to the temperature difference. A freeze-
thaw cycle is 72 hours. Saline soil Sample Nos. 1, 2, and 3
experienced three freeze-thaw cycles. Sample 4 was subject
to only one freeze-thaw cycle because it had low salinity, and
the frost susceptibility was measured and used as a reference.
The temperatures at different depths, and deformation of soil
samples were measured and recorded automatically when
the freeze-thaw experiments were carried out.

Results and Discussions

The test results for Sample No. 1 indicate that the
deformation at the top plate increased at a sinusoidal
variation of the top plate temperatures with the elapse of
time (Fig. 3). The temperature at the top plate was negative,
and the upper part of the soil sample was frozen at the
beginning of the experiment. The relevant deformation had
a quickly increasing trend during the first several hours.
Then the deformation increased slowly until about 30 hours
had elapsed, when the temperature at top plate was positive.
Subsequently, the heave rate of the soil sample increased
more pronouncedly when the temperature at the top plate
became negative again. In addition, when the temperature
at the top plate was in the range of 0°C to 2°C, the heave
rate of the soil sample was still reasonably high, due to the
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Figure 3. Temperature and the deformation processes of Sample 1
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Figure 4. Temperature and the deformation processes of Sample 2.
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Figure 6. Temperature and the deformation processes of Sample 4.

salt heaving. No thaw settlement was observed during the
entire deformation process, due to the high salinity of the
soil sample. From the above analyses and discussions, it can
be concluded that the deformation of Sample No. 1 mainly
included frost and salt heaving.
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Figure 7. Temperature distribution curves in the tested soil columns
when the top plate temperature reached -10°C, the minimum in the
experiment.
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Figure 8. Temperature distribution curves of Sample No. 2 when
the top plate temperature reached the minimum in different cycles.

Figure 4 is a diagram of the variation processes of the
temperature and deformation at the top plate of Sample 2.
The deformation of the soil sample gradually increased at
the beginning when the temperature at the top plate was
negative. A sudden decline of deformation of the soil sample
occurred when the temperature at the top plate became
positive, which mainly resulted from thaw settlement of
the upper thawed soil. Slowly, the deformation kept almost
steady, with only a slight decrease during the above-zero-
temperature period. Subsequently, the deformation began to
increase sharply when the temperature at the top plate was
2°C. It showed that salt heaving probably occurred. The
deformation continued to rise sharply with the temperature
becoming subzero and dropping continually. Meanwhile, it
can be noted that the deformation was almost constant in the
first few hours when temperatures dropped from 0°C to -2°C.
That happened at each cycle. This indicates that there is a lag
of deformation before cooling, due to insufficient time for
deformation to occur. In the second cycle, the characteristics
of the deformation process are similar to that of the first
cycle. But the minimum amount of deformation of the soil
sample corresponding to the positive temperature at the top
plate was greater than that in the first cycle. It demonstrated

Table 2. Experimental results of four tested soil specimens.

Sample  Soil Salinity ~ Deform- Frozen Water
type (%) ation(mm)  depth(cm)  Uptake (ml)
No. 1 Silt 9.1 5 34 118
Silty
No. 2 clay 2.79 7 76 89
Silty
No. 3 sand  6.14 0.38 60 64
No. 4 Clay  0.15 3.6 47 45

that the deformation does not return to the initial position.
There was a surplus heave deformation in Sample 2. The
salt heave was not clear in the 2" and 3" cycles, probably
because of a lack of salt after precipitation in the 1* cycle.
From the above analyses and discussions, it can be seen that
the deformation of Sample 2 was caused by frost heaving
and thaw settlement, with possible salt heaving.

Figure 5 shows the variation processes of the temperature
and the deformation at the top plate of Sample 3. The
deformation of the soil sample began to increase when the
temperature at the top plate was negative at the beginning. It
was not clearer compared to that of Sample 2 (Fig. 4). When
the top plate temperature became positive, the deformation
was almost constant, with slight see-sawing decreases due
to soil consolidation. When the temperature at the top plate
decreased from a positive temperature to about -4.3°C, the
deformation began to rise immediately and sharply. This
showed that there was a longer lag of deformation compared
to the temperature at the top plate, probably due to a high
salinity (6.14%) and the soil type (silty sand), which are not
favorable to soil freezing. Later, sudden settlement occurred
in Sample 3 when the temperature increased to about -4.0°C.
But it was still larger than that in the first cycle. This showed
that the entire deformation was accumulative but smaller
than Sample Nos. 1 and 2. It was difficult to determine the
salt heave during the period of soil heave in Sample No.
3. So its deformation was mainly caused by frost heaving
and thaw settlement, with possible salt heave, but the heave
amount was smaller..

Sample No. 4, with low salinity, was tested for its frost-
susceptibility. The deformation of the soil sample increased
when the temperature at the top plate became negative at
the beginning (Fig. 6). When the temperature reached the
proximity of 0°C, sudden settlement of the soil sample
occurred due to the thaw settlement of the upper part of the
soil column. During the positive-temperature period at the
top plate, the deformation kept stable. When the temperature
decreased to about -0.6°C, the soil began to heave rapidly,
until the temperature reached almost the minimum value of
-9°C; then the increase of deformation slowed. However,
even when the temperature rose within the subzero period,
the frost heaving was still growing. This well confirmed that
Sample No. 4 is a typical frost-susceptible soil.

Figure 7 shows the temperature distribution curves of the
tested soil columns when the top plate temperature reached
the minimum of -10°C during the 3" cycle, except for Sample
No. 4 in the 1* cycle. The frozen depth in Sample No. 2 was
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the maximum, while that of Sample No. 1 was the minimum.
Sample No. 4, though subject to one freeze-thaw cycle, was
frozen more deeply than Sample No. 1. Generally, the frozen
depth in silty sand is greater than that in silty clay because
of its greater thermal conductivity (Xu et al. 2001), but that
in Sample No. 3 of silty sand was less than that in Sample
No. 2. This indicates that salinity can effectively retard cold
wave propagation.

Figure 8 shows the temperature distribution curves of
Sample No. 2, as an example, when the top plate temperature
reached the minimum of -10°C in different cycles. Note that
the frozen depth rises with the increasing number of freeze-
thaw cycles. The variation process of the frozen depth in
Sample Nos. 1 and 3 is similar to that in Sample No. 2.

According to the above analyses and discussions based
on the experimental results for four tested specimens, heave
deformation is mainly influenced by soil type, salinity, freeze-
thaw cycle numbers, and others. The heave deformation in
Sample No. 2 of silty clay, with moderate salinity, is the
maximum (Table 2). However, the heave deformation in
Sample No. 3 of silty sand, with the greater salinity, is the
minimum. Sample No. 4 expands to a higher level even after
one cycle. The heave deformation in Sample No. 1, with the
highest salinity, reached a higher level, and without thaw
settlement. It can also be found that there are the different
threshold values in salinity and freeze-thaw cycle for the
different saline soils to lead to salt heave and salt hazards. To
determine the threshold values need further investigations
in detail.

Conclusions and Recommendations

According to the experiment results, analyses, and
discussions mentioned above the following preliminary
conclusions can be made:

(1) The deformation of saline soil is accumulative within
limited freeze-thaw cycles with sufficient water supply,
i.e., the minimum deformation increases gradually with the
increasing number of freeze-thaw cycles.

(2) Salinity has great impact on the deformation process of
saline soil. The deformation of soil with very high salinity
was mainly caused by frost and salt heaving, without thaw
settlement.

(3) Frost susceptibility strongly influences the deformation
processes of saline soil. The heave deformation of non-
frost susceptible saline soil, even with the higher salinity,
is small.

(4) To determine the occurrence of salt heave is difficult
for ordinal soils with moderate salinity because it happens
together with frost heave.

(5) The heave deformation in saline soils is mainly
influenced by soil type, salinity, freeze-thaw cycle number,
water supply, and others. It is a complicated process with
water, heat, and salt transfer subject to the repeated freeze-
thaw cycles.

(6) Therefore, elevation of the embankment height from
ground water table or surface standing water levels, subgrade

and local drainage control, and stricter control of salinity
of fills could be used to effectively mitigate frost and salt
heaving, and subsequent thaw settlement and weakening
for the design, construction, and maintenance of highway
foundations in areas affected by saline soil.
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Abstract

In this study, monthly average daily global radiation of 22 radiometric stations across the Tibetan Plateau were utilized
to determine the coefficients of the monthly Angstrom—Prescott model for estimating global solar radiation from
sunshine duration. Using the model, global solar radiation of another 116 meteorological stations across the Tibetan
Plateau were estimated. Combined with frozen ground data measurement at 75 stations, global radiation effects on the
maximum frozen depth of the active layer were discussed. The result showed that global radiation in the cold season
(from October to February the next year) had much influence on maximum frozen depth of the active layer. The
relationship between them in three typical stations showed a marked negative correlation. As a whole, the maximum
frozen depth of the active layer in nearly 80% of investigation stations had the same relationship with the global
solar radiation, while the others showed a positive correlation. This indicated that the maximum frozen depth of the
active layer was the result of combined effects of several factors other than global radiation. Of these influencing
factors, such as global solar radiation, local latitude, longitude, altitude, air temperature in cold season, relative
humidity, accumulation of precipitation in cold season, etc., only local latitude, altitude, global solar radiation, and air
temperature showed high correlation with frozen depth. Essentially, the influences of local latitude and altitude can
be regarded as the effects of global radiation indirectly. As the local latitude and altitude influenced the distribution of
global radiation, so the global radiation was an important affecting factor on the maximum frozen depth of the active

layer.

Keywords: active layer depth; global radiation; relative sunshine duration; Tibetan Plateau.

Introduction

Solar radiation is a main source of the Earth’s energy
and the basic driving force of the physical and biological
processes on the earth surface. The processes respond to the
seasonal variations in solar radiation fluxes in a complex
manner. The distribution of solar radiation around the world
determines the planet’s mean climate variation resulting
from the thermal balance of the Earth—atmosphere system,
and establishes atmospheric and oceanic circulation patterns
(Souza, et al. 2005). Topographic conditions effect the
distribution of solar radiation.

As for China, its regional topography is complex and its
surface condition is varied. This is especially conspicuous
in the Qinghai-Tibetan Plateau (TP) with higher altitude
and complex terrain. The TP is one of the most complex
geographical features in the world, with an average elevation
about 4 km or more. Such land surface features make much
difference in solar radiation among different regions across
the TP and result in unequal surface heating by solar radiation
(Ye & Gao 1979). Non-uniform distribution of solar energy
on the land surface has much effect on climate over the TP

and its surrounding area, and even on the global climate. In
addition, the TP, which is a huge land mass standing in the
mid-altitude troposphere with high altitude and complex
terrain, lies in the transition zone between the tropical
and sub-tropical and also in the heart zone of the famous
monsoon region in the Northern Hemisphere; its dramatic
heating and its strong continental strongly impact the Asian
monsoon, global atmospheric circulation and global climate
change (Ye & Gao 1979, Tao et al. 1999).

Moreover, the distribution of solar radiation across the TP
has a decisive effect on a decision on the characteristics of
plateau glaciers, permafrost, and vegetation distribution.

Furthermore, due to its unique geographic environment,
the TP developed a large area of permafrost, which is the
result of the climate change, and it also has feedback effect
on climate. As an important component of cryosphere,
which is an important driving force of global change and
a connection for interaction of other layers in the climatic
system, the presence and changes of the permafrost can affect
the energy and water exchanges of the land-atmosphere
system and further affect the formation and development
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of regional climate (Yao et al. 2002, Zhang 2002). The
active layer at the upper part of the permafrost is thawed in
summer and frozen in winter. Permafrost changes, leading to
changes in water and heat exchange characteristics between
land and atmosphere, first by changing the water-heat states
of the active layer, thereby causing changes and anomaly
of the atmospheric circulation system (Wang et al. 2003),
then affecting the weather system. Changes of the maximum
frozen depth of the active layer are key indicators of climatic
warming (Pavolv 1994). Thus, the maximum frozen depth of
the active layer has a close relation with the climate.

As a product of climate change, features of permafrost are
by the impacts of climate change, and global radiation in
the TP is an important influencing factor on Plateau climate.
Global radiation is the major source of ground heat in the TP.
Fluctuations in global radiation will cause a corresponding
impact to permafrost and its active layer (Kou et al. 1981).
Study of the relationship between global radiation and frozen/
thawed depth of the active layer do much to help us better
understand the impact mechanism of the permafrost and its
active layer. Relevant research work has been launched in the
TP region and has achieved some results. In the early 1980s,
Kou et al. (1981) studied the relationship between global
radiation and the thawed depth of the active layer using
the data measured at Fenghoushan at the TP. In their view,
thawed depth of the active layer in the permafrost region was
caused by solar radiant heat arriving at the surface and down
into the ground, and the statistical relationship between
them was established. The studies of Cheng et al. (1983,
1984, 1992) showed that the characteristics of the surface
solar radiation latitudinal variation were important reasons
for the permafrost zone. The variation of global radiation
determined the annual mean temperature at the bottom of the
freezing and thawing depth of the active layer (Zhou et al.
2000). Ding et al. (2000) discussed the relationship between
the accumulative soil temperature at 4 cm depth below the
surface and the freezing/thawing depth of the active layer of
the TP. Research showed that the formation of permafrost
and seasonal permafrost had a relationship with surface
radiation-heat exchange. The structure of the radiation-heat
balance had a decisive role in the formation and dynamics of
frozen ground. The surface energy budget and the changing
of the surface-air temperature were decided by the net
radiation, which depends mostly on global radiation, surface
condition, and net long-wave radiation (Zhou et al. 2000).

Those works mentioned above provided a basis for the
mechanism research of permafrost in the TP; however,
restricted by natural condition and outlay, those studies were
only based on a single site and with a short-term dataset
(Zhou et al. 2000). The work was small considering the
large-scale and long-term dataset of the TP. For the whole
TP, further works need to be done.

In this work, global radiation was estimated across the
TP; its influence on the maximum frozen depth of the active
layer was discussed. By multiple regression analysis method,
several effect factors for the maximum frozen depth of the
active layer were analyzed too.

Material and Method

Data used in this paper include frozen depth, global solar
radiation, monthly accumulative precipitation, monthly
average and extreme air temperatures, relative humidity,
and relative sunshine duration. Frozen depth data in the cold
season were collected in 75 meteorological stations from
1961-1998. Datasets of precipitation, monthly average air
temperature and extreme temperatures, relative humidity,
and relative sunshine duration were collected in 138 stations
in the TP and its adjacent regions. These data were measured
by corresponding observation criteria.

As for radiant data, there were only 22 radiometric stations
in the TP and its adjacent regions; other meteorological
stations are without radiation measurements, so global
radiations in those stations was estimated. The AngstrOm—
Prescott model (APM) is the most convenient and widely
used correlation for estimating global solar radiation (Liu
& Ji 1985, Chegaar & Chibani 2001, Almorox & Hontoria
2004, Almorox et al. 2005), which is expressed by

0/1,=a+bs, (1)

where Q and /; are, respectively, the monthly mean daily
global radiation (MJ.m-2.d-1) and daily extraterrestrial
radiation on a horizontal surface (MJ.m-2.d-1); S, is relative
duration of sunshine (the ratio between the number of hours
of sunshine duration to the total number of daylight hours);
a and b are empirically coefficients. Using the measured data
of monthly average daily global solar radiation on horizontal
surfaces and sunshine hours from 22 radiometric stations
across the TP, as given in Table 1, coefficients a and b can be
determined by the method of least squares. As a result, the
APM over the TP can be written as (Li, et al. 2007):

0/1,=0.213+0.56915, 2

The performance of APM was evaluated by calculating the
following statistical error test such as mean bias error (MBE),
mean absolute error (MAE), root mean square error (RMSE),
and mean relative error (MRE). These tests are fundamental
measures of accuracy (Driesse & Thevenard 2002, Almorox
& Hontoria 2004, El-Metwally 2004, Almorox et al. 2005,
Tymvios & Jacovides 2005, Menges et al. 2006, Bulut &
Biiyiikalaca 2007). They are defined as below:

MBE = %i (Qi,obs - Qi,est)

i=1 3)
1 n
MAE =— Z‘Qi,obs - Qi,est
nic “)
1<
RMSE = \/_ (Qj,obs - Qi,est )2
n o (5)
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n

MRE — lz Qi,nbs Qi,esl
n-._ .
i=1 Qz,obs (6)
The indexes (obs) and (est) identify observed and
estimated values, respectively. Results of the APM, applied
to the whole dataset available with 7400 samples from 22
radiometric stations across the TP, are illustrated in Figure
1. It can be seen from Figure 1 that the scattering of the data
points was small. And the values of MBE, MAE, RMSE for
the whole dataset result in -0.06, 1.22, 1.64 MJ.m-2.d-1,
respectively. The value of MRE is 7.6%. Such results indicate
that the agreement between the measured and estimated
values is marked. It demonstrates that APM was acceptable
for estimating monthly global solar radiation from relative
sunshine duration over the TP. With Equation 2, the monthly
average daily global radiation on a horizontal surface (Q)
in MJ.m-2.d-1 from January 1961 to December 2000 at 116
meteorological stations can be estimated. Finally, its monthly
total can be obtained too.
For convenience of analysis, the statistical variable, accu-
mulative anomaly for Q and FD is introduced. It is defined as

J

x; = (x, %)
i=1

where X is the accumulative anomaly value of Q or FD

from first year to the j year, X is the average value of the

whole dataset, and # is the length of the dataset.

(j<n) ()

Results and Discussion

EOF (Empirical Orthogonal Function) analysis results
showed that Yushu (33°01'N, 97°01'E, 3682.2 m), Lenghu
(38°45'N, 93°20’E, 2770.0 m) and Delingha (37°22'N, 97°22’
E, 2982.4 m) were typical sites (Xu, et al. 1990, Wang et al.
2003), so the influence of global radiation on the maximum
frozen depth of the active layer in these three typical sites is
discussed at first.

Figure 2 shows the influences of the accumulative
anomalies of global radiation on the maximum frozen depth
of the active layer in three typical stations at the TP. It can
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Figure 1. Results comparison between O  and O /- on the TP.

Table 1. Geographical location, annual mean air temperature (Ta) and period of the radiometric station used in regression analysis.

station Latitude (N) Longitude (E) Altitude(m) (above sea level) Ta(°C) period
Kuche 41° 43’ 83° 04’ 1072.5 11.3 Jul 1957-2000
Ruojiang 39° 02' 88° 10’ 888.3 11.6 Jun 1957-2000
Hetian 37° 08’ 79° 56’ 1374.5 12.4 Jun 1957-2000
Kashi 39° 28’ 75° 59’ 1288.7 11.8 Jul. 1957-2000
Erjina 41° 57' 101° 04’ 940.5 8.7 1992-2000
Gangcha 37° 20’ 100° 08’ 3301.5 -0.4 1993-2000
Gerlmod 36° 25’ 94° 54’ 2807.6 4.9 Jul 1957-2000
Xining 36° 43’ 101° 45’ 2295.2 5.9 1959-2000
Yushu 33° 01’ 97° 01’ 3681.2 3.0 Apr1960-2000*
Guole 34° 28’ 100° 15’ 3719.0 -0.4 1993-2000
Dunhuang 40° 09’ 94° 41’ 1139.0 9.3 Jul 1957-2000
Jiuquan 39° 46’ 98°29’' 1477.2 7.2 1993-2000
Mingin 38° 38’ 103° 05’ 1367.0 7.3 1961-2000
Garze 31° 37’ 100° 00’ 4414.9 5.6 1994-2000
Hongyuan 32° 48’ 102° 33’ 3492.7 1.3 1994-2000
Panzhihua 26° 35' 101° 44’ 1190.1 20.8 1992-2000
Changdu 31° 09’ 97° 10’ 3306.0 7.5 1961-2000*
Naqu 31° 29’ 92° 04’ 4507.0 -1.4 1961-2000*
Lahsa 29° 40’ 91° 08’ 3648.7 7.9 1961-2000*
Lijiang 26° 52! 100° 13’ 2392.4 12.6 1961-2000*
Kunming 25° 01' 102°41' 1891.4 14.8 1961-2000
Tengchong 25° 01’ 98° 30’ 1654.6 14.9 1961-2000

* some missing in dataset.
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Figure 2. The influences of global radiation in three typical stations
on the maximum frozen depth of the active layer.
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Figure 3. Distribution of the correlativity between global radiation
and the maximum frozen depth of the active layer.

be seen from Figure 2 that the accumulative global radiation
(Q) in cold season (from October to February of the next
year) had much influence on FD. The relationship between
them in three typical stations showed a marked negative
correlation. How about the other stations across the TP? The
relationships between global radiation and maximum frozen
depth of the active layer in cold season across the TP for
another 72 stations were also analyzed too. The results are
illustrated in Figure 3.

Figure 3 shows the distribution of the correlativity
between global radiation and maximum frozen depth of
the active layer. In Figure 3, the shaded part stands for the
negative correlation region, while the white part stands for the
positive correlation region. As a whole, the maximum frozen
depth of the active layer in nearly 80% of the investigation
stations had the same relationship with global solar radiation
as those typical stations, whereas the other 20% showed a
positive correlation. It indicates that the maximum frozen
depth of the active layer was influenced by other factors at
the same time. In addition to global radiation, the maximum
frozen depth of the active layer was the result of combined
effects of other factors, such as soil water content, soil
property, altitude and latitude, snowpack, vegetation, etc.
But what is the importance among those factors mentioned
above? Multiple regression analysis method was used here to
answer the question. Factors such as global solar radiation,
local latitude, longitude, altitude, average air temperature,
relative humidity, and accumulation of precipitation in cold
season were selected in the multiple regression analysis;
among these factors only local latitude, altitude, global solar
radiation and air temperature showed high correlation with
frozen depth. The multiple regression equation could be
written as

FD =—434.6+12.24¢ + 0.043H — 0.020 — 6.74T,
®)

where &, H, O, and Ta were the local latitude, altitude,
global radiation, and air temperature at the station. The units
of these variables were the same as those mentioned above.
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Figure 4. Comparison between the maximum frozen depth of the
active layer values observed (FD_, ) and estimated (FD_).

Global radiation was the amount from October to February
of the next year. The air temperature, 7a, was the average
value during the time range from October to February of the
next year. The multiple correlation coefficient of Equation 8
was 0.90, the partial correlation coefficients for ¢, H, O and
Ta were 0.99, 0.98, 0.81, and 0.81, respectively. It indicated
that the correlation between maximum frozen depth of the
active layer and the four effective factors was good. The
result between the observed and estimated frozen depth
with Equation 8 is illustrated in Figure 4. It can be seen
from Figure 4 that when the maximum frozen depth of the
active layer is less than 300 cm, the agreement between the
measured and computed values is good, and the scattering
of the data points is small. It demonstrates that Equation 8
was acceptable for estimating the average of the maximum
frozen depth of the active layer over the TP.

It can also be seen from Equation 8 that for the whole
TP, the global ration showed a negative correlation with the
maximum frozen depth of the active layer. The local latitude
and altitude show positive correlation with the maximum
frozen depth of the active layer. Essentially, the influences
of local latitude and altitude can be regarded as the effects of
global radiation indirectly. As the local latitude and altitude
influence the distribution of global radiation, so the global
radiation is an important affecting factor on the maximum
frozen depth of the active layer.

Conclusions

From the above discussion, the following conclusions
could be drawn:

(1) The APM was acceptable for the estimation of global
solar radiation.

(2) Global radiation in the cold season greatly influenced
the maximum frozen depth of the active layer. The
relationship between them in three typical stations
(Yushu, Lenghu, and Delingha) showed a marked
negative correlation.

(3) For the whole TP, maximum frozen depth of the ac-
tive layer in nearly 80% of all investigation stations
had the same relationship with global solar radiation as
the three typical stations; the others showed a positive
correlation.

(4) The maximum frozen depth of the active layer was
the result of combined effects of several factors
except for global radiation. Among these influencing
factors, local latitude, altitude, global solar radiation,
and air temperature showed high correlation with the
maximum frozen depth of the active layer.

(5) Global radiation was an important affecting factor on
the maximum frozen depth of the active layer.

Due to a lack of data on soil properties of the TP, such as
aspect was not considered in this work. Thus, further work
needs to be done.
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Abstract

Unfrozen soil-water content was monitored in the active layer of tundra soil, using TDR sensors at several locations on
the North Slope of Alaska and in the Brooks Range foothills. In addition, soil temperature was monitored to a depth of
1.5 m at these locations using thermistors. Particular attention was paid to soil water and temperature behavior during
freezing and thawing conditions. The upper organic layer of soil often exhibited very wet conditions and showed much
greater temporal variability of soil moisture than the lower mineral soil layers. Permafrost acts as a barrier to water
flow, so soils usually are wet as they thaw in the spring. Soil surface roughness and vegetation under tundra conditions
make accurate placement of sensors almost impossible. Minor discrepancies between soil water freezing and thawing
behavior must be tolerated. However, an overall picture of the processes still emerges. Results of this study may be
useful in improving tundra travel guidelines. Currently, tundra travel is allowed if the soil temperature in the upper
foot of soil is colder than -5°C. Soil-water content is not considered in the current management approach, though it can
be used to help better describe the temperatures at which soil freezing is complete. The measured soil-moisture data
indicates most of the soil-water freezing occurs above -2°C. This information indicates the -5°C temperature condition

is very conservative and a warmer temperature management point should be considered.

Keywords: measurements; permafrost; soil moisture; soil temperature; tundra travel.

Introduction

A project was established in 2006 to gather data for use in
addressing various surface transportation issues in northern
Alaska. This report examines some of the results obtained thus
far with respect to winter tundra travel. Current guidelines
limit tundra travel to periods when the soil temperature at
a depth of 30 cm is less than -5°C with snow cover depth
minimums depending upon the type of tundra (Bader 2005).
This criterion is based on the results of a three-year study
(Bader & Guimond, 2004) and may be conservative.

Soil-temperature and water-content data are used in this
paper to examine the possibility of using a slightly relaxed
criterion that could result in longer periods of allowed tundra
travel. This is based strictly on the freeze-thaw behavior of
soil water. No measurements of soil strength were obtained.
The objective is to examine the behavior of soil temperature
and water content in tundra soils during the processes of
freezing and thawing.

Materials and Methods

Twelve stations were installed in the fall of 2006. Eight of
the stations are located on the coastal plain; the remaining
four are in the northern foothills of the Brooks Range.
The stations used in this report are located east of the
Sagavanirktok River (Fig. 1).

Soil-water content was monitored at each station with
Campbell Scientific, Inc. CS616 TDR-type sensors at depths

0f 10, 20, and 40 cm. The depths at some sites varied slightly
due to soil conditions. The soil-water content sensors were
installed horizontally with minimal soil disturbance. Factory
calibration was used to convert raw readings to volume
fraction soil-water content. TDR-type sensors respond to the
soil dielectric constant, and since ice has a dielectric constant
similar to dry soil, the sensor effectively responds to changes
in unfrozen soil-water content. Hourly readings of unfrozen
soil-water content were recorded.

Soil temperature was monitored at each station with YSI
thermistors mounted in a string, at intervals to provide
temperatures at 0, 5, 10, 15, 20, 40, 60, 80, 100, 120, 135, and
150 cm below the soil surface. The soil temperature string
was placed into a hole drilled into the soil, and the evacuated
soil was used to back-fill the hole. Hourly readings of soil
temperature were recorded.

Other measurements include air temperature, relative
humidity, net radiation, wind speed and direction, snow
depth, and summer rain. Sensor readings at each station
were measured and recorded with a Campbell Scientific, Inc
CR1000 datalogger. Data were transmitted hourly to a central
processing facility with FreeWave radios. Solar panels and
a battery bank were used to provide power for each station
throughout the year.

Results and Discussion

Ice formation within soil pores increases the bearing
strength of freezing soils. Extremely dry soils, such as found
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in the Dry Valleys of Antarctica, or dry gravel or organic
soils exhibit no increase in bearing strength when frozen.

As soil water freezes, it acts as an impediment to the
movement of soil particles, thus increasing the bearing
strength of the soil. Water freezing in soil pores acts as if solid
particles were growing in the pores. A graph of frozen soil-
water content versus soil bearing strength in water- saturated
soil would be a typical S-shaped curve. As soil water starts
to freeze, little strength is added. At some point, the increase
in strength with water content is dramatic. As the freezing
process goes to completion, the curve levels off, and little
strength is added during the last stages of freezing. The
bearing strength of frozen soil is greater than the maximum
of the strength of ice or of unfrozen soil.

Similarly, for unsaturated soils, higher water content up to
some maximum, will result in higher strength when the soil
freezes. Very low soil-water content does little to increase
soil strength when the soil is frozen. As soil-water content
increases, soil strength increases upon freezing.

Soil water does not completely freeze at temperatures
below 0°C. As heat is removed from water, the temperature
lowers until the freezing point is reached. At this point,
the temperature remains constant until the liquid water
solidifies, or changes to ice, at which time the temperature
will once again start to drop. In soils, however, water does
not all freeze at the same temperature. Some freezes at or
near 0°C, while some freezes at much lower temperatures.
No unique freezing point exists for soil water (Koopmans &
Miller 1966). There are two reasons for this. One, soil water
contains solutes or salts which lower the freezing point. As
the soil water freezes, the salts become more concentrated
due to exclusion from the ice. And two, the “structure” of soil
water becomes increasingly ordered closer to soil particles.
This changes the free energy of the soil water and lowers the
freezing point. A similar phenomenon can be observed in
capillary tubes (Edlefsen & Anderson 1943).

Increasing the solute concentration of soil water produces
a minor effect compared to the “structuring” of the soil water
near soil particles.

The water next to soil particles is the last to freeze, and
will do so only at extremely low temperatures, due to its
molecular interaction with the soil particles (Anderson et.
al. 1973). Water is a polar molecule, and soil particles, es-
pecially clay and organic matter, have associated negative
charges. Water molecules tend to align in an ordered fash-
ion or “structure” next to soil particles. The effect decreases
with distance from the soil particle. The ordered molecules
are more difficult to freeze than those in bulk solution or free
water. The amount of unfrozen water present depends princi-
pally upon temperature for a given soil material. Except for
very low water contents, it is virtually independent of the to-
tal soil-water volume. The unfrozen-water content at a given
temperature is mainly dependent on specific surface area of
the soil. The amount of unfrozen water at a given temperature
increases as the specific surface area of a soil increases.

Data are presented from station DBM4 Sag Ivishak Met,
which was chosen as representative for this project. The
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Figure 1. Study sites locations on the central North Slope, Alaska.

active layer thickness (Fig. 2) for this station, as determined
by the point at which the maximum soil temperature line
crosses the 0°C line, is approximately 60 cm for the period
of measurement (October 1, 2006, to September 30, 2007).
This is a fairly typical active layer thickness for the soils
of this area. Active layer thickness varies from year to year
depending on summer weather. The average soil temperature
in the upper 150 cm was -4.15°C during the measurement
period.

Other methods of active-layer strength determination may
yield different results. Rod penetration is the most common
method of determining active layer thickness. Problems with
the rod penetration method include timing, presence of hard
spots in the soil (ice lenses, rocks, compact areas, etc.), and
operator consistency. It is also a labor-intensive method.
An advantage of the penetration method is that it is usually
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Figure 2. Average, maximum, and minimum soil temperature
profiles for the DBM4 Sag Ivishak Met site.

repeated over a relatively large area, resulting in an average,
maximum, and minimum value for the area. One problem
common to all methods is the location of the soil surface as a
reference point for depth. This can be a very serious problem
in tussock tundra.

Active layer thickness was generally a few centimeters
less for the foothills stations than for those on the coastal
plain. In addition, the soil at these sites remained frozen
longer. Although soil temperatures vary among the stations,
the relationship between soil temperature and soil water is
consistent.

The soil-water content at the Sag Ivishak Met site was
near saturation during the monitoring period from September
2006 to October 2007 (Fig. 2). This is typical of soils in
this area. Often soils in northern Alaska are wetter in the
spring and early summer, then dry out in the fall. During
the summer, down-gradient drainage and evapotranspiration
dry out the soils. The soil-water content at saturation in this
soil is around 60% by volume. Normal mineral soils have a
saturated-water content of around 40% to 45% by volume.
The high-saturated water contents in the soils studied are
attributed to high soil organic-matter content.

For greatest accuracy, the soil-water content sensors
should be calibrated specifically to each soil, especially under
conditions that depart from normal (Campbell Scientific,
Inc. 2004). Although the absolute soil-water content may
differ from that given by the factory calibration, the relative
water contents and the behavior of phase change in relation
to temperature should be accurate.

Freezing increases the complexity of the soil-water system.
Water moves in response to various gradients, including
thermal gradients. Water in soil moves from warm areas to
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Figure 3. Soil-water content and temperature for the Sag-Ivishak
(DBM4) meteorological station.

cold areas. As water moves, in response to thermal gradients,
it carries thermal energy or heat with it, thus modifying the
thermal and hydraulic gradients.

Freezing of soil water changes its ionic concentration and
thus its electrical properties, setting up new gradients and
complicating water-content measurement based on electrical
properties. The increase of solute concentration in soil water,
due to solute expulsion from ice during freezing, can cause a
minor decrease in the freezing point. This decrease is on the
order of a few tenths of 1°C.

In spite of the complexity of determining soil-water
content absolutely, much information may be extracted from
the relative soil-water contents and the water-content curve
shapes and positions.

Soil on Alaska’s North Slope typically thaws from the
top down, but freezes from both the top and bottom as
shown in Fig. 3. These phenomena have been noted by
others (Osterkamp & Romanovsky 1997, Romanovsky &
Osterkamp 1997).

The unfrozen soil-water content curves indicate that water
at the 40-cm depth began to freeze first, followed by that at
the 10-cm depth. The water at the 20-cm depth was the last
to freeze. As air temperature decreases and the days grow
shorter in the fall, there is less heat transfer to the soil and it
begins to freeze at the bottom of the active layer, just above
the permafrost, depending on how cold the permafrost is.
When the air temperature falls below freezing, water at the
soil surface begins to freeze.

As the soil water freezes in the fall, the temperature
remains near 0°C during the period of water-to-ice phase
change. This phenomenon is often referred to as the zero
curtain and is the result of the release of thermal energy
during the phase change from water to ice.
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Figure 4. Soil temperature and water content for the 20-cm depth at
Sag-lvishak (DBM4) meteorological station.

The unfrozen-water content curve remains nearly constant
during the initial period of the zero curtain. At some point, the
soil water has lost most of its latent heat and rapid freezing
occurs, as shown by the steep slopes of the curves in Figure
3. The unfrozen soil-water content curves then transition to
a fairly constant unfrozen-water content, where very little
further freezing occurs, even as the temperature markedly
decreases. Sometimes this transition is rather abrupt, and
sometimes it is more gradual.

Soil water at all sites studied thawed from the top down in
the spring. In the spring, the days grow longer, air temperature
increases, the snow begins to melt, and the soil thaws from
the top down. Snowmelt water moves downward in response
to gravity, warming the soil below.

Ice has a higher thermal conductivity than water, air,
or soil. Thus ice is more efficient in transmitting thermal
energy than water. This is another reason why soils thaw
more quickly than they freeze.

In the spring, during thawing conditions, the soil
temperature changes rapidly in response to liquid water
moving into and through the soil. The temperature curve
generally shows a slower rate of increase during the melting
of the water at a particular depth. This is attributed to the
latent heat required to thaw the ice. After the ice is thawed,
the temperature resumes a rapid increase. The soil water
generally thaws faster than it freezes. This may be attributed
to the influence of liquid water moving through the soil,
carrying thermal energy with it.

The phase-change period is shorter during the spring
as the soil thaws and ice turns to liquid water. In addition,
the temperature during this time usually is not constant at
0°C for any lengthy period of time. This may be attributed
to meltwater carrying heat with it to underlying layers.
During winter months, soils can desiccate and form thermal
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Figure 5. Soil temperature and water content for the 40-cm depth at
Sag-Ivishak (DBM4) meteorological station.

cracks. This increases the effective permeability of the soils,
allowing more infiltration of water during snowmelt (Kane
et. al. 2001).

Since no sensors were located at the 30-cm depth, data
from 20 and 40 cm were used to approximate conditions
there. Figures 4 and 5 show soil temperature and unfrozen-
water content for the 20- and 40-cm depths, respectively.

Figures 4 and 5 show that soil water does not immediately
begin to freeze at the onset of the zero curtain. Some time
passes as the water is releasing latent heat while it starts to
freeze. However, once started, the freezing process is rela-
tively rapid.

Figure 5 shows a slight increase in soil temperature during
the zero curtain during November. There is a corresponding
decrease in the slope of the unfrozen-water content curve dur-
ing this time. These features may be attributed to water mov-
ing into the soil layer at this point due to thermal gradients
from the soil freezing above and below this depth. As the lig-
uid water moves into this region, it carries heat or thermal en-
ergy with it, resulting in a slight increase in soil temperature.

Lines B and B’ in Figures 4 and 5 indicate the time when
the soil temperature drops below and rises above -5°C,
respectively. During the time that the soil temperature is
below -5°C, little additional unfrozen soil water will freeze
even at soil temperatures well below -5°C. At these depths,
the soil water is frozen to near its maximum level.

Lines A and A’ show the conditions when the soil
temperature is colder than -2°C. There is little difference in
the frozen state of the soil water at these depths between
-5°C and -2°C, particularly at the 40-cm depth. However,
time that the soil is colder than -2°C is on the order of a
month (Table 1), which is significant for tundra travel.

If we approximate the conditions at the 30-cm soil depth
by the average of the 20- and 40-cm soil depths, Table 1
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Table 1. Days soil temperature below certain levels for DBM4.

Soil temperature 20-cm 40-cm Avg of 20- and

colder than depth depth 40-cm depths
-1°C 195 209 202
-2°C 177 181 179
-3°C 169 165 167
-4°C 158 157 157
-5°C 154 148 151

shows that the soil was colder than 5°C during the winter of
200607 for approximately 151 days. During this time, the
soil at the same depth was colder than -2°C for 179 days,
four weeks longer. It was colder than -3°C for 167 days,
16 days longer. And the soil was colder than -4°C almost a
week longer. Figures 3, 4, and 5 show steep curves for soil
water freezing and thawing. When the soil reaches -2°C, the
soil-liquid-water curve is near its minimum, and only minor
freezing occurs at temperatures colder than this. Similar
results were obtained for the foothills sites.

Again, no soil strength tests were performed, and the
results indicate only the length of time that the soil was frozen
at temperatures colder than indicated levels. However, it is
known that the compressive (bearing) strength of the soils
increases as the ice content increases.

Summary

Soil-water content and temperatures were monitored
at twelve sites in northern Alaska from September 2006
through October 2007. Soil temperature and water behavior
were observed during this time with particular attention
paid to periods of freezing and thawing. Freezing started
at the bottom of the active layer and proceeded from both
the bottom and top of the active layer. During freezing,
soil temperatures remained near zero while the soil water
released its latent heat. This period is known as the zero
curtain. At a point in the zero curtain, the soil water begins
to freeze rapidly. When most of the water that was going to
freeze had done so, a transition occurred to a nearly constant
level of unfrozen soil-water content. Due to interaction with
soil particles, soil water does not completely freeze. Soil
temperatures colder than -2°C did not cause an appreciable
increase in the amount of frozen soil water.

In the spring, the soils studied thawed from the top
down. The thawing process was faster than freezing due to
meltwater percolation. Also because of snowmelt, the soil-
water content in the spring was at saturation. The difference
in frozen soil-water content between -2°C and -5°C during
the spring thaw was even less than it was in the fall during
freezing.

A relaxation of the tundra travel guideline from a
temperature of -5°C at a soil depth of 30 cm to a value
between -2°C and -4°C could significantly increase the
amount of time available for tundra travel. Further study
needs to be undertaken to examine soil strength in the region
between -2°C and -5°C before any changes in the guidelines
are considered.
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Abstract

The investigation to determine a cause for differential settlement of a tower foundation at Glennallen that had been
stable for over 40 years led to the derivation of formulae that reflected Osterkamp’s measurements for depth to base of
permafrost in the area and included snow depths, temperatures, and quantity of thermosyphon cooling.

Keywords: Alaska; foundation; permafrost; snow depth; thermosyphon; warming.

Background

Two towers were constructed in 1960 on permafrost, using
thermosyphon technology for passive subgrade cooling for
the first time. The two Alaska Communications Systems
(ACS) towers are both located in the vicinity of the Gulkana
Airport. The Glennallen Tower is located approximately 42
mi (7.2 km) southwest of the Gulkana Airport along the Glenn
Highway, and the Aurora Tower is located approximately 21
mi (34 km) northeast of the Gulkana Airport and /2 mi (0.8 km)
off the Tok Cutoff Highway. The locations of the tower sites
are shown on Figure 1. Both sites are underlain by lakebed
colodial clay silts which include coarser soils with cobbles and
boulders dropped from glacial icebergs. The weather station
at the Gulkana Airport has operated continuously since 1949.
The construction of the Glennallen tower was begun one year
after the construction of the Alaska Road Commission (ARC)
complex on the west side of the ACS site. The ARC complex
was constructed as if on a non-permafrost site, and the ARC
recognized the existence of permafrost only after their water
well froze up and considerable differential settlement of the
structures in the complex occurred. The Aurora tower was
constructed on virgin stunted black spruce terrain underlain
with permafrost.

The Gulkana Airport is at an elevation of 1580 ft (482 m).
The Aurora tower site is at 1890 ft (576 m), and the Glennallen
tower site is at 1455 ft (443 m). Both towers are four-legged
with post and pad type foundations. The individual tower leg
foundations are composed of three 12-in (300 mm) XH pipe
thermosyphons 24 ft (7.3 m) in length with the base plates 18
ft (5.5 m) below finished grade and are described in detail by
Long (1963).

The Glennallen site was evaluated in 1981, and a new
transmitter and equipment building was constructed on
thermosyphon piling to the east of the tower. The new structure
replaced the original building that was originally constructed
on-grade and later refrigerated to minimize thaw settlement.

Both tower foundations were evaluated and soil temperatures
measured in 1988. Soil temperatures were found to be warmer
than anticipated in the original design. As a result, 170 ft* (15.8
m?) finned condensers were added to two of the waveguide
thermosyphon piles at the turf-covered Glennallen tower

~ Gulkana Airport
@ Glennallen Tower
B Aurora Tower

D
2 _Glennallen

5 mi/8km

Figure 1. Location map.

facility in 1989. Temperature measurements at the Aurora
facility indicated a depth of thaw of over 20 ft (6.1 m) in the
area surrounding the most southern tower leg foundation. To
reverse the thawing found at Aurora, 510 ft* (47.4 m?) finned
condensers were added to the NW, SW, and SE foundations
and 170 ft* (15.8 m?) finned condensers were added to each of
the waveguide foundations in 1989. Foundation temperatures
seemed to be affected more by summer surface conditions
than by the winter snow cover or the winter air temperature.

In summer 2007, the foundations systems for each tower
were inspected. Excessive settlement was found on two of the
tower leg foundations at Glennallen. No settlement was found
at Aurora. In order to prepare recommendations to stop the
settlement at the Glennallen site, an in-depth evaluation was
performed to determine the cause of the settlement. It was a
goal to develop a method for better evaluation of permafrost
stability with changing climate and to provide a means of pre-
site evaluation.

Analysis

Osterkamp (2003) reported the depth to the base of
permafrost at Gulkana for the period from 1985 to 2001. The
depth to the base of permafrost is an excellent measure of the
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long-term thermal stability of permafrost. This measurement
includes all the effects of climate change at a particular site.

Measured thermal conductivity of snow varies primarily
with density and ranges from 0.02 btu/hrefte°F (0.034 W/
M°K) to 0.29 btu/hrefts°F (0.503 W/M°K) for densities from
14.7 b/t (0.236 g/cm?) to 32.2 Ib/ft* (0.515 g/cm?) (Sturm
et al. 2002). In comparison, a typical extruded polystyrene
insulation used in civil construction has a thermal
conductivity of approximately 0.02 btw/hrefte°F (0.03 W/
M°K) (ASHRAE Fundamentals 2001). By the numbers,
the insulating value of snow is very apparent. Of course,
this is nothing new to the people who live in the Arctic and
Subarctic, where a snow pile may be the difference between
comfortable survival and freezing to death.

The authors have seen instances where snow drifting
caused by man-made structures has insulated the ground to
such a degree that the depth to the top of permafrost at the
end of the thawing season increased from 5 ft (1.5 m) to
14 ft (4.3 m) in two years. An increase in the natural snow
depth will have similar albeit more subtle consequences.
In the region where the Glennallen and Aurora towers are
located, a small change in the surface heat balance equals a
large change in the foundation soil properties.

An empirical equation (Equation 1), which included snow
depth, was developed to approximate the degree of surface
freezing affecting the local permafrost. Weather data from
the Gulkana Airport show an average accumulated snow
depth of 26.6 in (676 mm) with an average Freezing Index
of 4621 °F-days (2567 °C-days) and an average Thawing
Index of 2970 °F-days (1650 °C-days) from 1960 through
2007. The end of December accumulated snow depth (DAS)
was selected to approximate available seasonal surface snow
conditions. Twenty inches (508 mm) was selected as an
approximate mean snow depth at the end of December.

Accumulated degree days =

nfodf *‘DAS + ntodt) (1)

°d, = Degree days freezing (°F)

°d = Degree days thawing (°F)

n. = Winter air to surface temperature reference

n = Thawing air to surface reference

DAS = December accumulated snow depth (inches)
20 = Arbitrary snow depth reference (inches)

The results are shown as Figure 2 alongside a plot of the
depth to the bottom surface of the permafrost presented by
Osterkamp for Gulkana. Note that each plot fits the other
well with a time offset to account for the depth to the base
of the permafrost.

Equation 1 was then modified to represent the effect of the
themosyphon cooling in a 70 ft (21 m) radius of the tower
and building area. The work was done by trial and error
so that the modified empirical equation would mimic the

variation in the depth of the permafrost base over time.

The ground surface area being evaluated was selected as
having a diameter approximately equal to the depth to the
base of the permafrost. The magnitude of the supplemental
cooling is a function of the thermosyphon radiator and is
represented by its area (SF).

Accumulated degree days =

DAS
«{nfodf === 0 ( ]+ nody) @

Square feet of radiation surface
Square feet of 70-foot radius arca

A

The plots of Equation 2 for each of the tower sites are
shown in Figure 3. It is very apparent that 1976 was a
pivotal year for the cooling of permafrost at Gulkana.

The permafrost cooling period from 1960 to 1976 reflects
the greater Freezing Index (4935 °F-days (2742 °C-days))
and lesser Thawing Index (2906 °F-days (1614 °C-days))
with an average snow cover of 19.4 in (493 mm) at the end
of December while the period from 1978 to 2007 reflects
the lower Freezing Index (4416 °F-days (2453 °C-days))
and greater Thawing Index (3012 °F-days (1,673 °C-days))
combined with a heavier snow cover of 34.1 in (866 mm).

Figure 4 compares the Glennallen tower area accumulated
degree-days with thermosyphon conditions with the conditions
south and west of the tower. Figure 5 shows the Aurora tower
area accumulated degree-days with thermosyphon conditions,
compared with surrounding area conditions. The Glennallen
tower area had a good surface turf cover, while Aurora had
an exposed gravel surface which increased its summer thaw.
Aurora had a greater thermosyphon heat removal capacity,
which improved its frost conditions over Glennallen during
years of heavy snow cover.
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Figure 3. Equation 2 for Glennallen and Aurora towers.
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Figure 4. Glennallen tower thermosyphon effects.

With the prevalent colodial soil throughout the area,
reduced temperatures will enhance ice lens formation as
envisioned by Radd and Oevtle (1973), while warming
will cause thawing and settlement (Nelson et al. 1983).
By increasing the cooling capacity of the south and west
foundations at Glennallen, ice lens formation and permafrost
expansion below the foundation pads is expected to occur
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Figure 5. Aurora tower thermosyphon effects.

and help counteract the existing differential settlement and
lateral thawing from the adjacent uncooled areas.

Conclusion

The data show that the greatest settlement occurred
under the foundations with the least thermosyphon cooling
capacity during periods of higher than normal snow cover.
When analyzing the thermal conditions for a structure, the
design should be area-wide and include snow conditions.

Recommendations

Increase the thermosyphon cooling of the foundations
with the largest settlement at the Glennallen tower site.

References

ASHRAE Fundamentals. 2001. Typical Thermal Properties
of Common Building Insulating Materials. American
Society of Heating, Refrigeration and Air Conditioning
Engineers, 25.5.

Long, E.L. 1963. The long thermopile. Proceedings of
the First International Conference on Permafrost,
Lafayete, Indiana, USA: 487-491.

Osterkamp, T.E. 2003. A thermal history of permafrost in
Alaska. Proceedings of the Eighth International
Conference on Permafrost, Zurich, Switzerland:
863-868.



1076 NINTH INTERNATIONAL CONFERENCE ON PERMAFROST

Nelson, R.A.. Luscher, U., Rooney, JJW. & Stramler,
A.A. 1983. Thaw strain data and thaw settlement
predictions for Alaskan soils. Proceedings of the
Fourth International Conference on Permafiost,
University of Alaska, National Academy Press:
912-917.

Radd, FJ. & Oertle, D.H. 1973. Experimental pressure
studies of frost heave mechanisms and the growth-
fusion behavior of ice. North American Contribution,
Proceedings of the Second Second International
Conference on Permafrost, Yakutsk, USSR: 377-384.

Sturm, M., Perovich, D.K. & Holmgren, J. 2002. Thermal
conductivity and heat transfer through the snow on
the ice of the Beaufort Sea. Journal of Geophysical
Research 107, American Geophysical Union.

Bibliography

Esch, David C. (ed.) 2004. Thermal Analysis, Construction,
and Monitoring Methods for Frozen Ground. ASCE
Technical Council on Cold Regions Engineering
Monograph.

Kinney, Thomas C., Santana, Barry W., Hawkins, D.
Michael, Long, Erwin L. & Yarmak Jr., Edward.
Foundation Stabilization of Gas Injection Facilities,
Prudhoe Bay, Alaska, 618-622.

Luscher, Ulrich & Afifi, Sherif S. Thaw Consolidation of
Alaskan Silts and Granular Soils, 325-334.

North American Contribution. Second International Confer-
ence on Permafrost, Yakutsk, USSR, 1973.

Osterkamp, T.E. Response of Alaskan Permafrost to Climate,
145-152.

Proceedings of the Fourth International Conference on
Permafrost. University of Alaska, National Academy
Press, 1983.

Proceedings of the Sixth International Conference on
Permafrost, South China University of Technology
Press,1993.

Zhang, T. & Osterkamp, T.E. Changing Climate and
Permafrost Temperatures in the Alaskan Arctic,
783-788.



Chronosequence of Forest Fire Effects on the Active Layer,
Central Yakutia, Eastern Siberia

L. Lopez
The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan

G. Guggenberger
Martin Luther University, Halle-Wittenberg Institute of Agricultural and Nutritional Sciences, Soil Biology and Ecology
Group Weidenplan 14 06108 Halle, Germany

E. Gerasimov
Permafrost Institute Siberian Branch, Ras, Yakutsk, Russia

R. Hatano
Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan

A.N. Fedorov
Permafrost Institute Siberian Branch, Ras, Yakutsk, Russia

Abstract

Despite the large area that fire covers, its recurrent nature, and its ecological role in this boreal region, it has been
poorly studied. This research was conducted in naturally burnt sites (five) with different post-fire periods; 4, 5, 15, 25,
and 50 years and intact (Larix cajanderi) forest sites (three) that were considered as control sites. Sampled soil profiles
included the active layer and the upper permafrost (0—1.7 m). The effect of fire on the aboveground can be clearly
observed, but what happens in the belowground is not well understood in fire-prone eastern Siberia. Irreversible
landscape changes occurred when the ice-rich and salty permafrost reached a degradation threshold. The results of
this study show that the active layer of burnt sites older than 25 years does not differ significantly with the active layer
of intact forests. On the other hand, the “younger” burnt sites showed a deepening of the active layer. The degrading
and aggrading processes of the permafrost are apparently followed by hydro-geochemical processes supported by
the poorly drained soil conditions of the active layer. In the intact forest sites, the soil ion profile shows increasing
concentration downwards, especially in the permafrost layer. During the years of permafrost thawing, ions moved
upward into the upper soil layers. Once the water balance of the site is balanced by the appearance of birch (Betula
platyphilla), soil moisture in the lower layers starts accumulating, and this movement downward brings the ions
back to the lower layers where, due to high water content and lower soil temperatures, they become trapped again
in permafrost (aggrading). This process takes approximately 20 years. In conclusion, fires in central Yakutia are at
present assimilated by the forest ecosystem and the drastic changes it experiences initially are temporal. The conditions
necessary for a permanent change in this boreal forest ecosystem is the increase in fire frequency which would not
allow forest regeneration.

Keywords: active layer; forest fires; global warming; permafrost regions; salinization.

Introduction .
disturbance occurs).

Forest fires in central Yakutia are recurrent phenomena
that determine regeneration, carbon storage and temporal
changes in land cover. The trigger for fire can be natural
(lightning) or human caused (human activity), but the
condition necessary for severe fire expansion is dry weather
(long rainless periods), high temperatures and low relative
humidity. Forest fires are a large source of both carbon
dioxide and methane emissions. However, they are both a
temporary source of carbon dioxide and usually a biogenic
one (Radionow et.al. 2006). Under special circumstances,
which are a combination of factors such as fire intensity
and climatic cycles (Shender et al. 1999), its occurrence
in ice-rich and shallow permafrost burnt sites can develop
into thermokarst depressions (Czudek & Demek 1970,
Brouchkov et al. 2004, Agafonov et al. 2004) or as is more
general, forest can return to its former state (as before the

Forest fires in eastern Siberia are not crown fires which
are more devastating in their effect (Harden et al. 2000),
but surface fires (Mouillot & Field 2005) because of low
tree density and because of the pyrophytic properties of
larch trees (Nikolov & Helmisaari 1993, Tvsetkov 2004).
Changes above ground can alter the movement of water and
salts present in the lower part of the active layer and upper
permafrost (Lopez et al. 2007a). The organic matter in the
top layer cools the active layer, and its disappearance after
severe fires results in active layer deepening. Forest fires
in Siberia have been cited as large scale disturbances that
can contribute to permafrost degradation if the soil thermal
regime is altered by climatic change (Kasischke et al. 1995,
Zimov et al. 1996). However, to our knowledge no study has
focused on the long-term effect on the belowground after
forest fires in eastern Siberia (several years after the fire
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occurrence). If climatic warming increases fire frequency or
intensity, the increase in annual thaw depths could result in
active layer salinization within areas of salt-rich permafrost
(Kokelj & Lewkowicz 1999, Lopez et al. 2007a). Thus, the
objective of this study is to assess the process by which the
forest ecosystem, especially belowground, recovers after a
forest fire,

Materials and Methods

Site description

Neleger Experimental Station is located 30 km north-
northwest from the city of Yakutsk (62°05'N, 129°45") and
belongs to the Yakutsk Permafrost Institute. Mean annual
air temperature is -10 to -11°C; amplitude of monthly
temperatures is about 62°C. Snow cover is 30-40 cm, but
it has recently reached 60 cm. Icy deposits are located at
depths from 1.5 m to about 3 m; they occur over more than
half of the territory, have thicknesses of up to 20-25 m and
are distributed in 18% or 76,000 km? of the territory of
central Yakutia (Fedorov et al. 1991). The area consists of a
group of Lena River terraces with elevations of 200-220 m
a.s.l.; it is a region of continuous permafrost up to 400-500
m thick. Quaternary deposits are from a few meters to 200 m
thick. The bedrock predominantly consists of limestones and
argillites. Disturbances that occurred around 10,000 years
ago, and still continue, have changed the landscape of this
area to grassland (thermokarst depressions). Precipitation
during the snow-free growing season is on average 110 mm,
which is about half the annual precipitation, whereas the
corresponding potential evaporation rate is 370 mm (Muller
1982). Soils in this region are classified as Gelisols; they are
predominantly silty-clay-loam (SiCL) to silty-clay (SiC) in
70% of the territory and sandy-loam (SaL) in the remaining
part.

Sampling

The sites selected were three intact forests (F1, F2 and
F3) and five chronologically burnt forests (B1, 4 years; B2,
5 years; B3, 15 years; B4, 25 years; and B5, 50 years). The
soil texture at all sites was silty-loam. Three 1.7 m-long soil
profiles were sampled at each location in May 2006. The
sampling took place when the soil profile was still frozen
and required a boring machine. The frozen layer (permafrost)
was measured in late September when the thawing front
reached its maximum. The core samples were sectioned in
10-cm intervals, logged, double-bagged, and returned to a
laboratory. Soil texture was determined by observation and
feel.

Soil moisture and chemical analysis

Soil moisture was determined gravimetrically by drying
to a constant weight at 105°C for 24 hours. A different
set of soil samples taken next to the samples used for soil
moisture measurements, in each of the profiles, was air dried
and then analyzed for pH in a supernatant suspension of 1:5
soil:deionized water mixture (pHmeter HORIBA)andelectric
conductivity in a supernatant suspension of 1:5 soil:deionized

water mixture (Page et al. 1982) (EC meter TOA CM-30V)
for each sampling site. Electric conductivity of saturated
paste (EC), used to evaluate saline and alkaline soils, was
estimated using soil water 1:5 suspension measurements
and following the relation obtained by Slavich & Petterson
(1993) for each soil texture. One soil profile at each of the
sites was subjected to ion content analysis: cations were
measured by atomic absorption spectrophotometer (Hitachi
75010) and anions by ion chromatograph (Dionex).

Results

Soil texture in the profile was predominantly silty-loam at
all locations down to 1.5 to 1.6 m. At site F1, pure ice was
found from 1.5 m. The ice found in that particular sampling
is part of ice wedges that can be 8 m long. It is this ice that if
melted could form pools and cause ground subsidence. Pure
ice was not found in burnt sites during sampling, but layers
with high ice content were found below the active layer. By
principle ice wedges are distributed in areas were the soil is
predominantly silty loam and they are absent in sandy loam
soils.

Soil moisture

Soil moisture in the active layer sampled at the forest sites
revealed different moisture conditions depending on the time
elapsed after the fire occurrence. For the period when the
sampling was conducted, a common pattern is observed for
the forest sites: higher soil moisture in the upper part of the
active layer (0 to 60 cm) with high soil moisture content (40
to 60%). This same pattern was observed in the B1, B2 and
B3 site. In these three sites and in the forest sites, there exists
a layer of lower soil moisture at the bottom of the active
layer. In contrast, in sites B4 and B5 (25 and 50 years after
fire occurrence), there is a built up of an ice-rich layer in the
upper permafrost where soil moisture ranged from 0.4 to 0.6
cm®.cm?). Soil moisture in the active layer at the “younger”
burnt sites ranged from .2 to .4 cm®.cm at the surface of the
mineral soil layer (below 10 cm). At approximately 120 cm
depth at all burnt as well as intact forest sites, soil moisture
increased, signaling the boundary zone or “shielding layer”
between the active layer and area where ice-rich permafrost
concentrates (Shur 1988). In the burnt sites the active layer
depth ranged from approximately 130 to 160 cm depending
on the time elapsed after the fire event (Fig.1). In each site,
vegetation differs in biomass with grasses and fireweed

Sites
F1 B1 F2 B2 F3 B3 B4 B5

'S
S

depth (cm)

@
S

120 1: i

=
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Figure 1. Soil thawing depth at the intact forest (F) and burnt (B)
sites.
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covering the recently burnt sites (Bl and B2) while birch
dominates the sites burnt 15, 25 and 50 years ago (B3, B4
and BYS). The size and age of trees differs accordingly but the
most important characteristic is the vegetation succession.
In B3, for instance, fireweed is non-existent and in B4 birch
becomes dominant and its canopy covers the burnt site,
while in the BS5 site, larch trees are already present, although
not still dominant.

Soil pH, EC, and chemistry

Soil surface (0 to 15 cm) pH varies at the forest sites from
5.5 t0 6.2 and then increases rapidly downwards. In the more
recently burnt sites B1, B3 and B4, low pH values in the
surface layer were observed, whereas pH in B2 and B5 were
around 7. Regardless of the site, intact or burnt forest, pH
shows a similar value of 8 from 50 cm downward. Despite
significant differences observed in the total ion composition
of'the soil profile, no change was observed in the pH between
the active layer and permafrost.

Electrical conductivity of the soil profile showed low values
in the active layer (0.81+0.24) and high in the permafrost
layer (1.0 to 3.0 mS.cm™) of the intact forest sites. In the
burnt sites, £C, is over 1.0 mS.cm! and shows an increase
in salt concentration in the active layer as compared to the
intact forest site (Fig.2). Nevertheless, it is important to point
out that £C in the B4 and BS5 sites are similar to those in the
intact forest. In general, the increase in salinity (using £C, as
a proxy) for the burnt sites in the active layer (1.03+0.19) is
low in comparison to grasslands soil, for example. The most
abundant ions in the active layer and upper permafrost are
CI, SO, and Na' (Lopez et al. 2007a). Of all these ions, it
is the Na* that appears more mobile than the other two. As it
was observed in the EC, profile, ion concentration increases
in the active layer as a result of fire disturbance. Na“ moved
upward in the B1, B2 and B3 sites, whereas in the B4 and
BS sites this was not observed and the concentration of Na*
is similar to that in the active layer of the intact forest site.
CI appears to have decreased from the upper permafrost
except for site B4, where the concentration in the permafrost
was remarkably high. It was in the B2 and B3 sites that the
increase of SO, was observed, while a decrease in the upper
permafrost indicates that it was the source of this ion. Again, a
remarkable concentration of SO, was observed in the upper
permafrost layer of the B4 site as it was the case with Na".

EC, (mScm’)
0 1 2 3 4 1 2 3 4

——B1
—=—B2

——B3

——B5

depth (cm)

120

140

160

e

180
Figure 2. Electric conductivity in the intact forest (F) and burnt (B)
sites. Each values are the mean of three samplings.

Discussion

Contrary to what has been suggested in previous studies,
forest fires do not cause physical or chemical changes in
the long-term that might bring changes in the landscape
or specifically hinder the re-establishment of trees. These
results, of course, do not suggest that thermokarst formations
in the past were not triggered by forest fires. The conditions
under which fires occurred at present differ from those
during the early Holocene in which the landscape looks
much different today than it did approximately 10,000 years
ago. The thermokarst depressions intermingled within the
forest and called “alas” are actually a drainage zone for the
melting snow in early spring and the extreme precipitation
events in summer (when the thawing layer is shallow and
the storage capacity is low) that are characteristic in central
Yakutia (Lopez et al. 2007b). Alas sites, where trees are not
able to grow because of high salt content in the root zone
(Desyatkin 1993, Lopez et al. 2007a) were caused by global
climate changes that most probably triggered forest fires
among several other climatic responses (Payette & Delwaide
2000). The results of this study suggest that at present, forests
assimilate fires provided they keep the same frequency
of occurrence to which they have been exposed during
the Holocene. Unfortunately, fire frequency studies have
been limited in Siberia, and other causes (political, social
or economical) for fire have not been correctly addressed,
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Figure 3. Na* profile in the soil profile (0-1.7 m) in the intact forest
(F) and burnt (B) sites.
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Figure 4. CI profile in the soil profile (0-1.7 m) in the intact forest
(F) and burnt (B) sites.
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Figure 5. SO,* profile in the soil profile (0-1.7 m) in the intact
forest (F) and burnt (B) sites.

while global warming has been the most reasonable “pundit”
to blame.

Soil moisture increased immediately in the active layer
after clear-cut (Iwahana et al. 2005) sites in the same area
whereas the cause for immediate increase of soil moisture
in the active layer. In this experiment the same was not
observed in the site more recently burnt (4 years) or in the
other sites, suggesting that vegetation that appeared after
severe forest fires (Chamerion angustifolium) transpired
(2.6 mm d"', unpublished data) more than the vegetation that
appears after clear-cuts. This transpiration rate is similar to
the larch forest average transpiration of ~ 3 mm d' (Dolman
et al. 2004, Ohta et al. 2001) in central Yakutia. After fires,
the active layer is known to deepen in the first years and
later recover to its former depth (Mackay 1995) following
re-vegetation of the forest soil and thickening of the organic
matter layer, factors that play an important role in keeping
a thin active layer. Despite the spatiality of the sampling
sites, recovery of the active layer has been also observed in
this study. The difference of the above vegetation at each of
the sites is thought to exert a strong influence on the water
balance of the active layer, and thus cause movement of
water that carries ions within its stream. The denser cover
of birch trees 15 years after the fire occurrence is probably
responsible for cooling of the active layer, as it can be
observed from the active layer depth at each of the sites
for the year when the experiment was conducted. The role
of understory vegetation and the re-building of the organic
mat cannot be set aside since they play an important role in
keeping soil temperatures low in the soil (Harden et al. 2006).
In the older burnt sites (25 years and 50 years) the depth of
the active layer was found at around 110 cm depth which is
similar to intact forest (Sawamoto et al. 2000). The B2 site
had the deepest active layer (160 cm) in 2006. One of the
explanation why B1 did not deepened as well could be that
the fire in this latter site was light (not stand- replacing fire),
and for that reason temperatures in this site were kept lower
than in B2. As it has been observed in this study, deepening
of the active layer has the potential to make soluble salts
available for transport into the upper soil layers of the active
layer. Elevated amounts of soluble salts in the root zone

especially can affect negatively larch forest establishment
because salinity affects plant growth and species diversity.

Between forest and thermokarst depressions in central
Yakutia there is usually a belt of birch that marks a buffer
zone where soil salt concentration is slightly higher than in
the forest but lower than in the grassland soils (Lopez et al.
2007a). This spatial gradient of vegetation adaptability to
soil conditions could be the explanation for chronological
vegetation succession in fire-prone forest of eastern Siberia.
According to information provided by local people, larch
forest takes approximately 100 years to fully regenerate in
this region.

The results of this study suggest that climate change,
already observed in the form of increasing temperatures and
increased precipitation in central Yakutia, have the potential
to affect the boreal forest through forest fires but this will
only happen if, prompted by higher summer temperatures,
fire frequency increases prompted by higher summer
temperatures, increases. Forest fires play a regeneration
role that has been part of this boreal forest for centuries
(Ivanova 1996) and has scarcely triggered thermokarst
formations (Brouchkov et al. 2004). There should also be
strong consideration of winter temperature and precipitation
trends, since growing season hydrology and permafrost
stability which is affected by winter conditions are strongly
linked to the size and frequency of forest fires during the
growing season (Ivanova. 1996, Harden et al. 2000) during
the growing season.

Conclusions

The effects of forest fires in the boreal forest of central
Yakutia are not permanent but are part of a regeneration
cycle for the forest in this region. The steps leading to forest
degradation (active layer continuous deepening, thawing of
ice deposits, formation of pools on the forest soil, etc.) were
not observed in the burnt sites in this study. On the contrary,
forest fires appear as a temporal phenomenon that revitalizes
the forest without affecting its stability.
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Abstract

The structure of the upper layers of permafrost and their interaction with cryosols was studied. Cryogenic processes
are widely distributed on loamy watersheds of North Jakutia’s lowlands, where the active layer is relatively shallow.
The upper layer of permafrost here is very complicated and its genesis is connected with the Holocene environmental
conditions and pedogenic processes of that time. The authors propose the term “soil-cryogenic complex” that includes
the soil profile, transient layer, and intermediate layer of permafrost. The role of the above-permafrost horizon of cryosols
in forming structure, properties, and spatial differences of the transient layer was analyzed. Widely distributed lateral
transition and accumulation of coarse organic matter between the elements of tundra microrelief were obtained.

Keywords: above-permafrost horizon; active layer; intermediate layer; lateral redistribution; soil organics; transition

layer.

Introduction

In case of shallow thickness of the active layer (AL) (1
m and less), permafrost plays a great role in pedogenesis
and determines the wide complex of signs and properties of
cryosols. It is a significant physical and geochemical barrier
that prevents vertical matter migration and determines its
lateral redistribution (Shur 1988, Gubin 1994, Alekseev
et al. 2003). The relatively high dynamics of AL thickness
cause the formation of the complex structure of permafrost
upper layers that reflect spatio-temporal interactions with
pedogenesis.

Depending on climatic fluctuations, weather conditions,
soil cover, and vegetation genesis, this zone of contact can
appear as a component of the AL or as a component of
permafrost (Shur & Jorgenson 1998, Shur et al. 2005).

The transient layer (TL) (the layer which thaws in the
warmest conditions) and the intermediate layer (IL) (the
layer of maximal Holocene thaw) are the upper layers of
permafrost within this zone (Shur 1975, Shur 1988). The
main properties and diagnostic signs of the TL, such as its
thickness and the seasonal and long-term dynamics of being
in a frozen or thawed state, are the significant factors that
influence pedogenesis. It is well-known that the majority
of pedogenic fieldwork in high-latitude areas is conducted
in the summer, when the AL has not reached its maximum
yet and the real above-permafrost soil horizon is still frozen.
True thickness of the AL and the morphological structure of
soils can be obtained only at the end of September—beginning
of October, when surface freezing begins and snow cover
becomes stable.

Methods

The moundy soil complex and TL were analyzed on
loamy watershed sites of the Khomus-Yuriakh River
(Indigirka lowland; 70°00'N, 153°36'E) and Sukharnaya
River (Kolyma lowland; 69°30'N, 152°00'E). The basic
deposits here are Late Pleistocene silty loams with the
features of synlithogenic pedogenesis and with ice complex
(yedoma formation). The IL thickness here is about 1-1.5
m. The vegetation cover is represented with moss-sedge-
cotton-grass on the Indigirka site and with moss-sage-dryas
on the Kolyma site. The mean gradients of the watershed
slopes are about 2-3°. The Kolyma site has the features of
steppe because of low thickness of snow cover and better
drainage.

The structure of soils and the TL were analyzed at the
beginning of autumn, when the AL had reached its relative
maximum. On the Kolyma site, two trenches were dug
through all microrelief elements (2 and 5 m long, 40 cm
wide). The structure of soils, their horizon thickness, the AL
thickness, and the TL structure (upper 20 cm) were studied.
Near the trenches numerous additional soil pits (n = 15) were
dug to obtain the variety of morphological properties of soils
under the mounds of different height and types of vegetation
and under the cracks of different depth.

On the Indigirka site, it was necessary to find two
experimental, square sites because of more complete soil
structure. The first (basic) site is on watershed (250 x 250
cm), and the second (additional) is on the top of a gentle
slope (200 x 80 cm; 150 m from the first site; slope gradient,
3°). All of the microrelief elements were within these sites:
low, middle, and high mounds with different vegetation,
sedge-cotton-grass tussocks. Choosing the proper site, the
maximal difference between mounds and crack surface was
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a concern. The majority of elements within the sites was
similar; surface structure, size of mounds and cracks, soil
and vegetation cover, and quantity of patchy mounds. The
main difference was in relatively more ponding of the second
(slope) site which was reflected in a greater distribution of
tussocks.

On the first site (watershed), soil and permafrost surfaces
were graded. The highest point of a site was taken as “zero,”
with the precision of 1 cm and an interval of measure of
5 cm; 2500 measurements of each parameter were made.
Measurements of soil horizon thickness (organogenic and
above-permafrost) and the TL structure were made with an
interval of 10 cm in 10 trenches, 25 cm wide.

After clearance of the site bottom, the lateral structure of
the TL was analyzed. There are three main components of it:
ice, ice-ground, and frozen coarse organics. Its ice saturation
was estimated, and the cryogenic texture was obtained.
Morphological analysis of soil profiles was made on the
example of the most representative side of the trench, where
samples were also taken. According to this data, schemes of
soil and permafrost surface, TL structure, and vegetation-
cover structure were made.

Additional soil pits (n=15) were dug near the experimental
sites and the TL structure was also studied to a depth of about
20 cm. The AL thickness was measured under the different
types of mounds and cracks (n = 130).

The same measurements were made on the second site
(slope), but the interval of measurements was 10 cm.

Results and Discussion

Comparison of the soil and permafrost surface schemes
of the first Indigirka site (watershed) showed that the
microelevations of the TL surface are under mounds and are
represented by ice. The authors suggest that such structure
of the TL surface can be determined by the previous history
of soil-surface genesis, and propose the following model of
ice formation.

At the earlier stages of nanorelief genesis (patchy mound
with sparse vegetation), the AL thickness was more than
under cracks. While thawed, water has accumulated here,
and then with seasonal freezing, has turned to ice. This
accumulation had a progressive tendency caused by ice
forming on the one hand and by vegetation and organogenic
horizon forming that has decreased the heat flux on the other
hand. Heat absorption differences between ice, ice-ground,
and frozen coarse organics determined different speeds of
thaw, TL surface genesis, and structure formation (Mackay
1983).

The results of comparing soil surface and TL microrelief
schemes of the second Indigirka site are a little bit different.
Their topography is well expressed too, but the micro-
depression zones of the TL surface are mainly distributed
under the centers of mounds, and are presented by ice-
grounds or coarse organics. The micro-elevations are under
cracks filled with peat. Ice distribution in the TL is related
to circumferential parts of mounds, and ice underlies 5-10

cm deeper than the TL surface. The same situation in the soil
and the TL structure was obtained in numerous additional
pits (n = 8) in microrelief and appears to be authentic for this
region of the Indigirka lowland.

Another component of the above-permafrost horizon
(AH) and TL formation was obtained in numerous soil pits
and trenches. When the AL thickness reaches its relative
maximum, the lower parts of soil profiles are over-saturated
with water. The microdepressions of the TL surface
microrelief become the channels, where the inrush of water
is obtained. The scheme of possible fluxes, which was
created by a method of relief plastic (Stepanov 2006) on data
basis, coincided with the situation obtained in the field. Such
water redistribution determines the coarse organic matter
redistribution and discharge (Shuster et al, 2003, Mergelov
2006). The material is denuded from the microelevations of
the TL surface and accumulates in the microdepressions.
The obtained data show that the mean slope gradient is
about 2-5°, and the maximal is 12—15° or even 20°. Such
an active migration of small portions of wet peat along the
microslopes can be forwarded by thaw of ice-ground with
the reticulated cryotexture, which is distributed in negative
microrelief forms.

The authors suppose that the difference in spatial structure
of the TL and the AH is determined by the processes which
occur in the lower parts of the soil profile and by the
interaction of microrelief elements.

On the Indigirka site, in the majority of cryosols under
mounds, the organogenic AH is forming. It consists of peat
mixed with mineral material. Organic carbon content here
is 4.7% (n = 6). These indexes are a little bit higher in the
TL, but then they decrease with depth. Both horizons are
spatially different. Zones which are extremely rich with
organics are obtained here (23.4%). There are also flux-
like zones in which the organic material is mixed with the
mineral one (3.2%). As for the mean samples of coarse
organic material, total organic carbon content is 10.1% for
the first experimental site (n = 10) and 8.9% for the second
(n = 6). The mean thickness of the AH is 7-12 cm, and the
total thickness of this horizon with the TL is 25-32 cm. This
data coincide with that of another author (Hinkel 2005).

The mean thickness of the peat (or duff) horizon is not
more than 7-13 cm, and the quantity of organic carbon here
is about 9%. So in some cases, the store of organic carbon
in the system here (AH + TL) is even more than in the upper
parts of soil profiles (except of peat soils in nanopolygonal
cracks).

The given data allow us to single out the organogenic AH
of Indigirka tundra soils that differs from similar horizons
with cryoturbated organic material of the Kolyma lowland
(Karavaeva 1969, Gubin 1994), other regions of North
Jakutia (Elovskaya et al. 1979), and East European tundra
(Ignatenko 1979). Soils with such an unusual lower horizon
and TL were obtained earlier (in the 1980s—1990s) on
watersheds of typical tundra in the Alazeya-Kolyma region.
Distribution of such soils is limited, and the main requisition
is the existence of cracks filled with peat that reach the surface



LuracHEV AND GUBIN 1085

of permafrost. So the possibility of such a system forming
is determined by contemporary and previous (Holocene)
conditions (AL thickness, processes of frost heaving and
peat forming, etc.).

Conclusions

An analysis of loamy watershed deposits and cryosols of
North Jakutia lowlands shows the existence of a complex
system of layers with different properties on the border
between the AL and permafrost. Its genesis and structure
are determined by the bioclimatic situation of the Holocene.
The authors propose to single out this system as a “soil-
cryogenic complex.” Its structure is the following: soil
profile: TL (a layer which thaws in the warmest conditions)
and IL (a layer of maximal Holocene thaw). The border
between the AH and TL is the arena of active pedogenesis,
where its most specific features are reflected. The spatio-
temporal differences of this system show the mechanisms of
soil-cover genesis and the interactions between its elements.
Such well-expressed permafrost microrelief determines the
wide lateral redistribution, migration, and accumulation of
coarse organic matter within this complex.
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Abstract

Erosion along Alaska’s Beaufort Sea Coast introduces substantial quantities of largely undecomposed organic matter
into the Arctic Ocean annually. Three bluff exposures along the northern coastline of Barter Island revealed organic
materials extending 1.5 meters below the surface. Peat deposits (12—80 cm thick) are in sediments that extend to 1.8
meters and overlay sands and gravels, under which are alluvial-marine sediments. The bluff exposures are composed
of 10-20% ice wedges and moisture content of the soil ranged 2—-80%. Total carbon content in the active layer averaged
10% and 14% in the frozen soil. Total nitrogen was less than 2% throughout the soil profiles. Soil pH and electrical
conductivity show a relationship between mineral soils at depth and increased values.

Keywords: Arctic Alaska; coastal erosion; cryogenesis; cryoturbation; gelisols, patterned ground soils.

Introduction

Coastal erosion is a growing concern in northern Alaska.
The apparent accelerated rate of erosion along the Beaufort
Sea coast of Alaska (Brown et al. 2003) may have major
implications for life and development along the coast. Several
coastal Native Alaska villages are battling against increasing
storm intensity and frequency (McCabe et al. 2001), a
continuing loss in duration of the protective sea ice (Fetterer
2002, IPCC 2007), and increasing summer temperatures
(Jorgenson et al. 2006). All of these are causing increased
erosion and permafrost degradation. In Kaktovik, located
on Barter Island, the current airport and an old landfill site
are rapidly eroding into the sea (Robinson 2004). Erosion
along the arctic coastline of northern Alaska has also been
hypothesized to be a significant influence on global climate
change due to the input of carbon-rich peat soils into the
ocean and carbon dioxide to the atmosphere (Jorgenson et
al. 2005). The result may be a positive feedback to an Arctic
warming cycle.

On polygonal terrain along the coast, soil physical
structure and chemical properties are strongly related to ice
wedge polygon development (Shur and Jorgenson 2007).
This interactive-formative process may span a period of
five to eight thousand years. Soil stratifications and physical
structures are mixed and warped, by cryoturbation, at the
boundary of ice wedges due to freeze-thaw cycles and ice
wedge formation and reformation (Bockheim 2007). This
situation complicates the examination of soil morphology
and characterization of the active layer and renders the
systematic interpretation of permafrost soils a challenge.

In the past, tundra soils have been a significant carbon
sink because primary production has been greater than
the slow decomposition rate of organic matter in cold and
frozen permafrost soils (Hobbie et al. 2000, Ovenden 1990).
As a consequence, it is estimated that tundra soils have
accumulated an estimated 25-33% of the world’s soil carbon
(Oechel and Vourlitis 1995). Soils along the Arctic coastline

contain large quantities of mostly poorly decomposed
organic materials (Ovenden 1990, Ping et al. 1997). As the
coast erodes, there is a change in the thermal regime of the
soil and the ice wedges degrade. Moisture content decreases
while temperatures increase, and as a result the active layer
thickens.

Likewise, warming temperatures can cause large scale
permafrost and ice wedge degradation (Jorgenson et al.
2006) which can in turn cause substantial changes in
surface hydrology (Hinzman 2005). In the last several
decades, temperatures have been on the rise in the Northern
Hemisphere, most notably in the Arctic and Sub-Arctic
(IPCC 2007), and there is evidence that this warming
trend will continue unabated (Chapman and Walsh 1993,
Serreze et al. 2001). The current warming trend in the arctic
is evidenced by increased erosion of the northern coast of
Alaska (Semiletov 1999, Brown et al. 2003), permafrost
degradation (Jorgenson and Kreig 1988, Jorgenson et al.
2001), and decreased extent and duration of sea ice and
hydrological changes (Morrison et al. 2000).

The ability to make predictions about changes in the soil
depends on an understanding of what alterations are taking
place and what interactions may occur between various soil
properties. To understand the complex changes that may
occur due to erosion of coastal soils, a detailed study of soil
morphology, as well as chemical and physical soil processes
is required. In this study we examine properties of the soils
that are eroding along the coastine exposures near Kaktovic
Alaska in order to better understand the processes occurring
and materials being transferred to nearshore waters.

Methods

Sites for intensive investigation were selected on the
northern shore of Barter Island, west of the village of
Kaktovik. Three bluffs sites were selected for excavation
and sampling (GPS: 70.13393N, -143.65578W, 70.13393N,
-143.65245W, and 70.1345N, -143.66083W). Polygons
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Alaska

Beaufort Sea, Alaska
Barter Island

Figure 1. Site location and profile photos.

west of Kaktovik are very large and flat, measuring 12-20 m
in diameter, indicating large ice wedge formation. Exposed
ice wedges at the eroding bluff are indeed large, reaching
3-3.5 m in width. The large ice wedges and dense surface
polygonal net in this area are consistent with high bluff
alluvial-marine sediment landforms. Most of the vegetation
cover along the northern Barter Island coastal bluff is sedge
with some willow and small amounts of Dryas found on frost
boils. Bluff exposures at three points located approximately
100 m apart (Fig. 1) were cleaned from the surface to a depth
of 1.5 meters. Following removal of slumped and refrozen
material, the soil layers were identified (Schoeneberger et
al., 1998), dimensional samples were cut from the active
layer, and dimensional core drilled with a SIPRE corer to
a maximum depth of 1.5 m. All samples were kept frozen
until time of analysis at the UAF-AFES Plant and Soils
Laboratory at the Palmer Research Center. Soil bulk density
and water contents were determined by weight difference of
dimensional samples upon drying at 100°C. Total organic
C (TOC) and N were determined using a LECO CHN
analyzer and organic matter (%OM) by loss on ignition at
450°C. Exposure sediment, water, TOC, and N stocks were
determined using the exposure description and analysis by the
method of Kimble et al. (1993) to account for cryoturbation.
Temperatures from near the surface soil and right above the
permafrost table were measured with a thermometer.

Results and Discussion

Temperature

Soil temperatures in the first week of August, 2006, at the
ground surface, measured from 5-7°C, and just above the
permafrost 2—-5°C. Surface temperatures are likely to vary
based on weather conditions present.

Cryogenic features

Active layers along the northern coast of Barter Island
averaged lower volumetric water at 38% compared to the
permafrost which averaged 53% volumetric ice (Table 1).

Table 1. Soil properties for eroding shoreline at Barter Island,
Alaska.

Bluff Exposure
Property 1 2 3
Bank height above water (m) 18 18 18
Mean thaw depth (cm) 45 36 54
Cumulative organic thickness (cm) 77 63 87
Maximum organic depth (cm) 133 78 127
Total amount of wedge ice volume (%) 21 20 18

Total organic carbon store in top 1m,
excluding ice wedges, volumetric
extrapolation from sample, (kg C/m?) 32 41 34

The high water content in active layers is positively related
to organic matter which has high water holding capacity.

The high water (ice) content in permafrost is due to
segregation of ice. The upper active layer is dryer than
the permafrost due to exposure to warmer temperatures,
drainage at the bluff face, and lateral movement to lower-
lying thermo-erosion troughs nearby. In addition to buried
organic layers holding water, ice lenses ranging in thickness
from Imm to 20mm were present in the permafrost cores.
Vertically aligned ice bubbles in these ice lenses indicate
that each lens is a former freezing front. In early winter, the
thawed portion of the soil refreezes at two fronts: from the
surface and from the underlying permafrost. Water in the
active layer migrates toward these freezing fronts and low-
lying water will migrate toward the lower freezing front. This
vertical movement is evidenced in the bubble alignment. All
three cores showed evidence of refreezing in the first 3 cm
from a deeper thaw in a previous summer.

Ice wedge volume on Barter Island is higher compared
to other portions of the Beaufort Sea coast. The high bluffs
provide protection from direct ocean wave impact and
erosion. Because of the volume of the large ice wedges,
extensive cryoturbation is evident. As the ice wedges develop
and expand, they squeeze the inter-laying soils, bending and
distorting soil horizons, and altering bulk density and thus,
moisture-holding capacity. This evidence of cryoturbation is
strongest near the ice wedges and less in the center areas of
polygons. Barter Island experiences short, cool summers and
very cold winter temperatures. The severe cold can cause
the surface soil layers to crack vertically. The combination
of material falling or washing into these cracks, and the
distortion imposed on soil layers by expanding ice wedges
creates the cryoturbated features (Fig. 1).

Morphological properties

Depending on where the permafrost core is drilled in
relation to the location of the ice wedges, great differences
in soil stratigraphy are observed. For example, in the core
at Site 1, a peat-filled crack extended from 125 to 133 cm
below the surface, and vertically oriented layers of peat and
sediments were found at a depth of 80—125 cm. The vertical
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Table 2. Soil properties by horizon.

Depth Total
Exposure # Horizon range pH EC Texture Thermal oC Total N Total OM
(cm) ds cm? State (%) (%) (%)

1 0i/Oe 0-12 5.64 1.08 MK AL 22.5 1.61 44.5
70.13393N Bw 15-30 5.4 0.49 SIL AL 2.47 0.148 3.99
-143.65578W  Oajj 30-45 498 0.58 MK AL 14.7 0.810 30.2
Oaf/Bgfjj 38-70 6.82 5.20 MK/SIL Pf 7.21 0.498 14.4
Bgf/Oafjj 70-99 6.79 11.25 SIL/MK Pf 4.13 0.332 8.27
Af/Oafjj 99-146 6.96 12.75 SI/MK Pf 5.04 0.272 10.1
2 Oa 0-17 5.18 0.95 MK AL 20.5 0.198 40.9
70.13393N Bg 17-38 4.79 0.53 SIL (10% GR) AL 19.9 1.15 39.8
-143.65245W  Oi/Bgjj 38-50 4.9 0.73 PTMK/SIL AL 19.4 1.26 31.5
Oaf/Bgfjj 50-75 493 2.35 MK/SIL Pf 22.1 1.38 24.2
Cf 79-94 7.04 2.37 S Pf 0.770 1.52 1.54
3 Oa 0-19 6.58 0.86 MK AL 14.4 0.00 28.9
70.1345N Bw/Oajj 19-40 5.98 5.16 SIL AL 19.7 1.34 20.0
-143.66083W  Oa 40-52 5.86 0.90 MK AL 13.5 1.00 26.9
Oal/Bgfl 60-75 5.97 0.86 MK/SIL Pf 14.7 0.953 354
0a2/Bgf2 80-85 6.53 1.15 MK/SIL Pf 14.2 1.08 28.4
0a3/Bgf3 100-105 6.87 1.08 MK/SIL Pf 6.50 1.05 13.0
Oa4/Bgf4 117-127 6.78 1.65 MK/SIL Pf 11.2 0.706 22.4
Cf 140-155 7.36 2.52 S Pf 1.13 0.0730 2.26

* AL=active layer; Pf=permafrost.

stratigraphy and high ice volume (50-70%) indicates that
this core resides in close proximity to an ice wedge. Similar
conditions existed at Site 3. The first attempt to drill a core
at Site 2 resulted in a high ice volume sample with vertically
oriented peat horizons, appearing as if cracks in the soil
surface had filled with water, distorting the soil stratigraphy.
At 97cm, gravel was encountered, drilling stopped, and a
second, successful drilling, just 0.5m from the original site,
resulted in the core used for analysis. The core at Site 2 had
nearly horizontal soil layers with abrupt wavy boundaries.
Layers of muck (sapric) alternated with mineral sediments,
most likely deposited by eolian or alluvial processes.
Organic-rich materials with lower ice volume (pore ice at
30%) were found from 50-70cm and below that marine-
alluvial sand deposits were encountered.

All three sites followed similar general horizonation in the
active layer. A thick organic layer (12—19cm) lay over silt,
which lay over a more decomposed organic layer. Mixing of
these layers due to cryoturbation was present in some cases,
but the origin of the horizons could still be distinguished by
texture (muck for organic materials and silt loam for Bg or
Bw horizons). Organic matter was found cryoturbated deep
into the permafrost to a depth of 133 cm. None of the bluff
cores exhibited clear horizontal layering as the result of
strong cryoturbation.

Redoximorphic features were observed in the root
channels of the Bg and Bw horizons in the active layer (Fe-
concentration 7.5 YR 5/8, matrix 2.5 Y 4/1). The saturated
conditions created a reducing environment in which root

channels become the source of oxygen in the redox process.
Organic acids produced in the surface organic layers lower
the pH and iron is reduced from Fe(III) to Fe(II). The reduced
iron is water soluble and carried with water movement to
the lower mineral layers. Roots extending into the mineral
horizons exude oxygen where microbial activity facilitates
oxidation and precipitation of the iron Fe(III) oxides resulting
in the presence of reddish-brown soil mottling.

Soil physical properties

Thaw depth varied slightly among the 3 sites (45, 36, and
54 cm) most likely due to micro-topographical differences.
Thaw depths are smallest in polygon troughs and deeper
at the center of the polygon, and deeper again on the rim.
Polygon troughs were generally avoided for pit excavation
and coring, as they tend to have ice wedges (pure massive
ice) below the surface. Thaw depths were not measured
according to micro-topographical features, but in relationship
to bluff excavations. Thaw depths of 25-50 cm are typical
at bluff exposures along the Beaufort Sea coast, but varies
somewhat based on annual climate at a particular site.

Soil textures at these locations were found to be fairly
consistent. Muck layers (Oa) were found in the top 10-20
cm at all sites, followed by a silt loam horizon (Bg or Bw,
10—40 cm) and then a muck or muck/silt loam horizon (Oa/
Bgjj) starting at 38 cm and extending to 100 cm in one site.
Cores 2 and 3 had a Cf horizon of alluvial-marine sand at 79
and 140 cm respectively. This pattern of vertically stratified
organics, mineral, organics, mixed organic/mineral, and sand
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gives a glimpse into the formation of the soils at the coast.
The surface organic layer has likely been developing for
many hundreds of years. The underlying thick silt layer is an
indicator of a long-term event of eolian or alluvial deposit,
which was preceded by a period of plant growth similar to
current conditions. Cryoturbation has largely erased similar
historical pattern in the permafrost layers, but the underlying
sand layers are remnants from the end of the last ice age.

Chemical properties

Surface organic horizons and buried organic layers
contained the highest quantity of organic carbon (OC)
averaging 19.1% and 12.0%, respectively, and the silt
dominant layers contained 7.6% OC on average. The total
nitrogen (N) averaged 1% with no clear correlation between
the values and the soil type, mineral or organic. This may
be due in part to the difficulty in separating the mineral and
organic components in cryoturbated layers. The pH at each
site tended to increase with depth, as did the EC, especially
in the mineral horizons. Additionally, there is an inverse
relationship between the TOC%, pH and EC, which reflects
the strong influence of the organic matter on soil properties.
Organic acids produced by the OM decrease the pH values,
but also act as a buffer, neutralizing the salt effects. Thus,
the EC was lower in organic-rich layers, but higher in the
mineral soil. The higher pH values found in deeper, mineral
soils are due to the calcareous nature of the parent materials
(Ca-rich deposits from the Brooks Range). At bluff Site 1,
the EC values are significantly higher between 38-146 cm.
This may be due to one of two reasons. One theory is that
these soils represent an old surface, a thaw lake that had at
one time been flooded with seawater. Another possibility is
that the neighboring area, which was treated with bio-solids
for 13 years, affected surrounding soils. The high salt content
of the waste may have migrated and moved deep under the
surface through frost cracks and cryoturbation.

Conclusions

Soils along the high bluffs of Barter Island are characterized
by high ice volume, both in size of ice wedges and segregated
ice within the depth measured. Cold temperature and the wet
tundra on the coastal plain contribute to such ice formation.
Cryoturbation was found in all exposed bluff faces and
permafrost cores drilled inland. All active layers exhibited
a similar pattern of horizonation: thick surface organic layer
over a mineral B horizon, with a cryoturbated O horizon
underneath. Redoximorphic features exhibited in pore
linings and masses were common in the mineral B horizons.
All profiles contained high organic carbon and increasing
pH with depth.

Additional research is currently underway on the soil
properties of similar soils inland from the bluff, those not
impacted by erosion, in an effort to add to the understanding
of the impacts of coastal erosion on soil properties.
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Global Land Use Change and Its Specificity in Permafrost-Affected Regions:
Consequences for Cryosols
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Abstract

The most specific land use change in high latitudes is the dynamics of agricultural lands. Contrary to the global zonal
trend (northward increase of agricultural land abandoning), there was the growth of agricultural areas in cold and
permafrost-affected regions both of Eurasia and North America. But since the 1990s the dynamics of agricultural land
became divergent in different parts of the North. Due to the system economic crisis in Russia, the area of agricultural
lands in permafrost-affected regions shrank greatly; however, in Alaska and Norway, farmlands continued to grow. It
proves that increasing of agricultural lands of the North is mostly related to social and economic reasons, but not to
climate change. Consequences for cryosols induced by both socio-economic and climate changes are mostly similar.
They provoke the deepening of the active layer, development of thermokarst, and change of organic matter quality

(degradation of peat and increase of soil humus content).

Keywords: agricultural lands; cryosols; global change; land use; permafrost; socio-economic change.

Introduction

Global climate change and the following landscape and
ecosystem transformations are the most popular topics
in geosciences including geocryology and soil science.
However, global change overwhelms not only climate, but
also socio-economic processes as well. The shift of oil and
gas mining to the north is a very well-known trend in the
world. Socio-economic processes in the North usually have
their specificity (Forbes 1999), but their influence on the
trends of land use change in high latitudes is not the focus
of recent studies. Less is known about the main trends of
permafrost-affected landscapes and ecosystems change due
to alteration of land use in the North, and only last year, the
scientific community began to pay attention (Gutman 2007).
As for permafrost and soils, something is known about how
they are changed under such transformations of vegetation as
clear-cutting (Iwahana etal. 2005) and forest fires (Yoshikawa
et al. 2003, Lopez et al. 2006). Much less is known on the
agricultural transformation of northern soils. However, the
last decades were very crucial to agricultural lands of the
world as the intensification of relevant technologies and the
rise of productivity resulted in a drastic decrease of arable
lands in many countries. Almost nothing is known about
what the situation with the dynamics of agricultural areas is
in northern (perma)frost-affected regions of the world.

The goal of this paper is to assess the main processes of
land use change (primarily agricultural) in northern regions
in comparison with the global trend and the consequences for
(perma)frost-affected soils—cryosols. Analyses of national
and world statistics, literature, and field observations are the
main methods in the study.

Change of Agricultural Land Use

Global trends of agricultural land use

Contrary to the slow growth of total agricultural areas in
the world, more than 80 countries demonstrate the stable
decrease of them. From 1961 to 2002, about 2.3 mln km?>were
abandoned from agricultural use, mostly in Russia, Australia,
the USA, and West Europe. Six types of abandonment of
agricultural lands were distinguished (Lyuri et al. 20006).
The first four types are associated with countries, where
decreasing of agricultural lands is a result of agricultural
intensification. US-type: the decrease of agricultural area as
a result of agricultural intensification with the increase of
agricultural production. Twenty-one countries (US, UK, West
Europe, Australia, India, Thailand, etc.) have this type of
agricultural lands dynamic, and they abandon about 1.0 min
km? of agricultural area (43.5% of the world value) (Fig. 1).

Japan-type: the decrease of agricultural area as a result of
agricultural intensification with the decrease of agricultural
production (the course for food import). Two countries, Japan

The dynamic of agricultural area in US-type countries
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Figure 1. Data — http://faostat.fao.org/site/497/default.aspx.
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and South Korea, abandoned 0.02 mln km? of agricultural
area (<1% of the world value). France-type: the decrease
of agricultural area as a result of agricultural intensification,
then its increasing during last years with increasing of
agricultural production (the course for food export). Six
countries abandoned 0.1 mln km? of agricultural area (4%).
Hungary-type (transitional): the decrease of agricultural area
as a result of agricultural intensification, then its decline as
a result of deep economical crises. Nine countries (Poland,
Hungary, and other countries of East Europe) abandoned
0.07 mln km? of agricultural area (3%).

Two other types of agricultural land abandonment are
associated with countries where agricultural lands decrease
as the result of crises, wars, revolutions, and other non-
agricultural processes.

Russian-type: the enlargement of agricultural area, then its
falling as a result of deep economical crises with the rise and
then decrease of agricultural production. Seventeen countries
(Russia, other countries of the former USSR, Bulgaria,
and Romania) abandoned 0.85 miIn km? of agricultural
area (37.0% of the world value). Miscellaneous-type: the
decrease of agricultural area with no relation to agricultural
productivity and production. Twenty-one countries
(Bangladesh, Cameroon, Lesotho, Nigeria, Swaziland, etc.)
abandoned 0.25 mln km? of agricultural area (10.9%).

Abandoned agricultural area is substituted by two kinds of
lands: (1) by settlements, infrastructure, industry, etc., and
(2) by fallows. In the last case, fallows are usually a process
of replacement by natural ecosystems.

Land use change in Russia and its northern regions

The dynamics of the areas of agricultural lands both in
Russia as a whole and in its northern (perma)frost-affected
regions is very specific. We have analyzed it separately
for two essentially different periods: (1) for non-crisis
1960-1980, and (2) for the 1990s — system economic crisis
in the country and afterwards. Figure 2 shows that the
growth of the cropland areas has practically finished from
the beginning of the 1960s for the whole territory of Russia.
Cropland area expansion occurred only in the most southern
regions; however, in boreal and temperate zones, it was
stable or even diminishing.

The reverse situation took place in northern permafrost-
affected areas. The intensive increase of the cropland area
began from 1960-1970 and continued until the beginning of
the crisis of 1990 (Fig. 3).

Similar patterns, but more complicated and controversial
for northern territories, are characteristic for dynamics of
arable lands and agricultural areas (Figs. 4, 5). Thus, the
dynamics of the cultivated areas in permafrost-affected
regions of Russia in the favorable 1960s-1980s was more
similar to that of the most southern parts of the country, but
not to adjoining boreal and temperate regions.

In the 1990s the system crisis had embraced all of the
country, and in all regions of Russia there was a significant
reduction of agricultural areas, including arable lands and
crops (Figs. 6, 7).

Dynamics of Cropland Area in Russia before Crises
of 1990s
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Figure 2. Data — State Committee 1985-1998.

Dynamics of Cropland Area in Russian Northern
Regions before Crises of 1990s
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Dynamics of Agricultural Area in Russia before
Crises of 1990s
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Dynamics of Agriculture Area in Russian
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Dynamics of Agricultural Area of Russia
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Dynamics of Croplands in Russia since 1990
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Analogous processes took place in permafrost-affected
regions of the country, though the unique subject of Russian
Federation (Khanty-Mansi autonomous district), with some
increase in the areas of croplands in crisis time, occurred
namely in this zone. In all other northern regions, the
agricultural areas were reduced, though this process had
various rates. However, by the end of the 1990s in the
majority of permafrost-affected regions the shrinkage of
agricultural areas has practically stopped, and they were
approximately stabilized. It is observed in the Murmansk
area, Saha (Yakutia) (which has the greatest area of the
agricultural lands in the permafrost-affected zone), in Nenets
and Chukchi autonomous districts (Figs. 8, 9).

Such agricultural land stabilization has occurred more
than in half of analyzed permafrost-affected regions. It
is remarkable, but a similar effect of the termination of
the shrinkage of agricultural areas takes place only in the
most southern regions of the country, and in the boreal and
temperate areas the process of croplands decrease proceeds
with former intensity. Thus, the agricultural lands of
permafrost-affected regions have reacted to the system crisis
of the 1990s in a very specific form: Their dynamics even in
these crisis years was more similar to dynamics in the most
southern agriculturally productive areas of the country.

The effect of stabilization in cold regions, which in the
south is related to the optimum for conducting agriculture
by natural and demographic conditions, should be explained
by other reasons. First, it is caused by the remoteness
of these areas from the basic agricultural regions of the
country; it makes the transportation of the foodstuffs here
very expensive and focuses local producers and consumers
on home resources. Secondly, it can be explained by the

Dynamics of Agricultural Area in Russian Northern
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significant percentage in the population of local indigenous
people for which the traditional agriculture is the core
and even the only source of existence that forces them
to stabilize the situation at a certain acceptable level as
soon as possible. Besides that, a traditional economy is
“economically isolated” and much more independent to
financial cataclysms, legal problems, and other aspects of a
system crisis than the modern economy.

Land use change in the north of Russia, US, and Europe

However, in spite of all specificity of the agriculture of
permafrost-affected regions the general decrease of the
agricultural areas in the north of Russia was very significant.
So, arable lands of Russian northern regions in the period
from 1990 until 2003 have decreased by 1.5 times (from
230,000 to 150,000 Ha) and reached practically the value of
1970 (Fig. 9).

However, the dynamics of Russian arable lands has a
very severe pressure of economic crises. In this case it is
very interesting what type of dynamics of agricultural lands
was in other non-crisis permafrost-affected regions of the
Northern Hemisphere. It was found out that in Alaska, the
constant increase of the area of arable lands took place in
the 1974-2004 period. It has extended practically in 5 times
(Fig. 11). This Alaskan agricultural situation is principally
contrary to the rest of the US, as the stable reduction of
agricultural lands took place in the country at that time.

In another northern region—Norway—the other type of
arable land dynamics takes place (Fig. 12). The expansion
of arable lands from the middle of the 1990s was replaced
by stabilization, and the last years, by insignificant reduction
(approximately 3%). It essentially distinguishes Norway
from all other countries of Western Europe, where from
1960-1980, there is a reduction of arable areas.
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Dynamics of Arable Lands in Russian Northern Regions
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Thus, the dynamics of arable lands in different cold regions
of the Northern Hemisphere is essentially diverse. We see
“growth-fall” in Russia, “growth” in Alaska and “growth-
stabilization” in Norway. That allows the assumption that it
is mainly defined by social and economic, but not by natural
(changes of a climate) factors. Besides that, the dynamics of
agricultural lands in permafrost-affected areas in different
parts of the Northern Hemisphere are absolutely not similar
to the mainland and neighbors: Alaska is different from the
USA, and Norway, to all other countries of Western Europe.
The Russian north is more likely similar to the Russian
agriculturally productive south, than to the adjacent boreal
and temperate regions.

Consequences of Land Use Change
for Cryosols

Previous materials elucidated in the paper showed that
agricultural use of soils in permafrost-affected regions of the
world is growing or, at least, a stable factor of soil change.
So, the influence of this type of land use on polar soils should
be known as well as the other ones.

Figure 13. Total destruction of agricultural field after use of
permafrost-affected soils for a cropland. Central Saha (Yakutia).
Remnants of ploughed horizon proved the former tillage of these
soils.

Our field studies in Central Saha (Yakutia) showed that
the tillage of loamy soils resulted in occurrence of a humus
horizon with a sharp lower boundary, as it is characteristic
for all arable soils of the world. However, a specific tillage-
induced feature is the lowering of the permafrost table
often beneath 2 m (so after agricultural development, these
permafrost-affected soils do not fit the criteria of Cryosols
(WRB) and Gelisols (Soil Taxonomy) anymore).

But the most dangerous phenomena taking place after
involvement of some permafrost-affected soils in agriculture
is the total destruction of soil surface because of catastrophic
development of thermokarst and thawing of underground ice
wedges (Fig. 13).

Our data are in full correspondence with materials of
Gavriliev (2004) who experimentally showed that after
12 years of agricultural use in Central Saha (Yakutia),
ice wedges can thaw from a depth of 1.8 m to 3.2 m, and
thermokarst holes can develop depths from 0 to 0.95 m.

The other data on tundra soils involved in agriculture
from another part of the Eurasian cryosol area—northeast
European Russia—also showed that they are characterized
by development of sod and humus horizon instead of peaty
litter and by occurrence of more contrast temperature regime
with deep thawing of mineral horizons (Archegova et al.
2004).

Agriculture-induced soil change in permafrost areas
has both similarity and difference with other types of
land use and anthropogenic influence. As well as reindeer
overgrazing, clear-cutting, and forest fires, it leads to active
layer deepening (Broll 2000, Iwahana et al. 2005, Lopez et
al. 2006). However, manure amendments for agriculture lead
to an increase of carbon store in cryosols contrary to other
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types of land use. Anthropogenic change of cryosols has
mostly the same trend as induced by global climate change,
at least in some regions of the cryopedosphere—active layer
increase (Mazhitova et al. 2004).

Conclusions

Agricultural land use change in permafrost-affected
regions is very specific and has other trends than boreal and
temperate regions of the world. Cold regions have different
types of dynamic: (1) growth in Alaska, US, (2) growth and
stabilization in Norway, and (3) growth and fall in Russia
due to economic crises of the 1990s. Land use change is
caused by socio-economic but not by climatic reasons. The
local agricultural economy of remote northern areas is much
smaller and more independent than that of central productive
regions; that is why it will be saved by local communities,
especially by indigenous people.

The consequences for cryosols induced by both socio-
economic and climate changes are mostly similar. They
provoke the deepening of the active layer, development
of thermokarst, and change of organic matter quality
(degradation of peat and increase of soil humus content).
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Control of Asymmetrical Subgrade Temperature with Crushed-Rock Embankments

Along the Permafrost Region of the Qinghai-Tibet Railway
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Abstract

On the basis of in situ tests of embankments with different crushed rock structures, this paper studied methods
for controlling asymmetrical subgrade temperature. It is found that these methods can slowly change the ground
temperature regime, but cannot completely adjust the asymmetrical subgrade temperature. Small changes in thickness
and grain size of crushed rock had only a limited effect on controlling asymmetrical temperature regime. Compared
with the ground temperature regime under different structures of crushed rock slope protection of the same height, it
is found that the ground temperature under the south shoulder of an embankment with full crushed rock coverage is
lower than that under an embankment with partial coverage, and that the ground temperature under the north shoulder
of an embankment with partial coverage is lower than that of a slope with full coverage. It is suggested, therefore,
that the south-facing slope be fully covered with crushed rock with thicker structures, while the north-facing slope be
partially covered with crushed rock and thinner structures.

Keywords: crushed rock structure embankment; permafrost region; Qinghai-Tibet Railway; south- and north-facing

slope of the embankment; temperature regime.

Introduction

Using an active cooling embankment to protect the
underlying permafrost, a lot of engineering measures were
successfully applied in permafrost engineering construction,
especially in the Qinghai-Tibet Railway (QTR) (Rooney
1997, Georing et al. 1996, 2000, 2001, 2003, Ma et al.
2002, Cheng 2003). For instance, they include crushed
rock embankments, embankments with crushed rock
slope protection, embankments with thermo-siphons and
permafrost bridges etc. Their cooling effects have been
studied (Georing et al, 1996, 2000, 2001, 2003, Wu et al.
2006, Sun et al. 2004). These measures have ensured that
the QTR successfully passes through the warm permafrost
regions with high ice contents. Long-term monitoring data
along the QTR showed that these measures have different
cooling effects in permafrost regions with different ground
temperatures (Wu et al. 2005, Ma et al. 2006). In particular,
no matter what embankment structure was used, there was
a thermal difference between the south- and north-facing
slopes of the embankment, an asymmetrical temperature
regime was formed under the embankment -- the ground
temperature under the south side shoulder is higher than
that under the north side shoulder (Sun et al. 2004, Wu et
al. 2005). This kind of temperature distribution can cause
the potential instability of the embankment. It is therefore
necessary to adjust the asymmetrical temperature distribution
under embankments by using special measures.

Along QTR, on the basis of in situ tests and temperature
monitoring of embankments with different crushed rock
structures (3 embankments with the slopes fully covered
by crushed rock, 3 embankments with the slopes partially
covered with crushed rock with different grain sizes and 1
embankment with the slope partially covered with the filling

soil of the embankment), this paper analyzed and compared
the changes in the ground temperature regime under the
embankment with different structures. Observations should
provide fundamental data for preventing and fixing of the
potential damage to embankments.

Test Sections and Schemes

The test site is in the Wudaoliang area along the QTR,
which is a plateau with lacustrine deposits and thick ground
ice area covered by 5%—6% vegetation, altitude of 4500—
4700 m. The mean annual air temperature is -5.6°C and the
mean annual range of air temperature is 22.3°C. The mean
annual precipitation is 264.8 mm and the maximum snow
depth is 14 cm.

DK1082+350-DK1082+500 was the test section of
embankments with the slopes fully covered with crushed
rock with different thicknesses; DK 1082+650-DK1082+850
was the test section of embankments with the slopes partially
covered by crushed rock with different grain size and an
embankment with the slope partially covered with soil. Their
details are shown in Table 1.

The original embankment in the test section is a common
soil embankment built in 2002. The width of the track
surface is 7.1 m, the height of embankment is 2.0-2.8 m
and the gradient of embankment is 1:1.5. The widths of the
south- and north-facing partial slope protection using soil
are 3 mand 2 m.

For the requirements of the tests, we changed the original
design. In the section DK1082+350-DK 10824500, we only
fully covered crushed rock with different thickness on the
slope of the original embankment (shown in Fig. 1). In the
sections of DK1082+650-DK1082+750 and DK 1082+800—
DK1082+850, we use a partial coverage of crushed rock with
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Table 1. Test schemes.

QTR kilometer o Mean height of Structure size of Slope protection of Structure type of
post /°C embankment/m embankment embankment
DK 10824350- Thickness of the south/nor?h-faced slope: 1.0
DK 1082400 -2.35 2.51 m/0.6 m ;
Crushed rock size: 10 cm
Thickness of the south/north-faced slope: 1.3 Embankments with the
%Igl%ggzz-:i%%_ -2.35 2.65 m/0.8 m; slopes fully covered by
Crushed rock size: 10 cm crushed rock
DK 1082-+450- Thickness of the south/norfh-faced slope: 1.6
DK 1082500 -2.35 2.79 m/l.Om,
Crushed rock size: 10cm
DK1082+650- 235 235 Width of the south/north-faced slope: 6.0/4.0 m
DK1082+700 ’ ’ Crushed rock size: 20 cm; Thickness: 1.5 m
DK 1082+700- 535 225 Width of the south/north-faced slope: 6.0/4.0 m; Slfrg's”a‘aﬂ“rti‘alﬁi‘“c?g;;ﬁ
DK1082+750 - ' Crushed rock size: 30 cm Thickness: 1.5 m pes p y cov Y
crushed rock
DK1082+800- 235 276 Width of the south/north-faced slope: 5.0/3.0 m;
DK1082+850 ' ’ Crushed rock size: 10 cm Thickness: 1.5 m
DK1082+750- 235 211 Width of the south/north-faced slope: 5.0/3.0 m; slfnelb?lfiﬁmcgigggi
DK 1082-+800 - ' Thickness: 1.5 m pe partie’ ycoveree vy

* T, is mean annual ground temperature at depth of 15 m from the original ground level down (shown in Fig. 4).

Slope protection fully covered 7.1m

crushed rock at the south faced slope

Slope protection fully covered by

crushed rock at the north faced slope

Width: 1, 1.3, 1.6m

Width: 0.6, 0.8, 1.0m

Figure 1. The cross section sketch map of embankment with the slope protection fully covered by crushed rock in DK1082+350—

DK1082+500.

Slope protection covered
partially by crushed rock at
the south faced slope.
Height: 1.5m

Slope protection covered
partially by crushed rock at
the north faced slope.

P
o« e

Height: 1.5m

Figure 2. The cross section sketch map of embankment with the slope protection partially covered by crushed rock in DK1082+650—

DK1082+850.

different widths and grain sizes to replace the original slope
protection partially covered by soil (shown in Fig. 2). In the
section of DK1082+750-DK1082+800, we only widened
the original soil slope protection to 5.0/3.0m (shown in Table
1). Per test section, the length is 50 m, a lot of tests indicated
that they are long enough to eliminate the thermal boundary
effects from adjacent embankment sections (Wu et al. 2006,

Sun et al. 2004, Ma et al. 2000).

DK1082+375, DK1082+425, DK1082+475, DK1082+
675, DK1082+725, DK1082+775, and DK1082+825
respectively were chosen as monitoring profiles of ground
temperature. In DK1082+375, DK1082+425, and DK 1082+
475, four boreholes were installed in each profile—on the
south and north shoulder of the embankments and at the
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Figure 3. Ground temperature changes vs. time at different depths
in the natural borehole (DK 1082+600).

south and north toe for embankments with partial slope
protection using soil (shown in Fig. 2 marked by “@” ).In
DK1082+675, DK1082+725, DK1082+775, DK1082+825,
six boreholes were installed in each profile-the south and
north shoulder and toe of embankment, the south and north
toe of slopes partially covered by crushed rock, respectively
(shown in Fig. 3 marked by “e” ). Also a reference borehole
20 m deep was installed 20m away from the north slope toe
of embankment at DK1082+600 to measure the natural
ground temperatures.

A galvanized iron pipe was placed in each borehole. A
thermometric string (the thermocouples placed at 0.5 m
intervals) was installed in each pipe to record the temperatures
at different depths.

The thermocouples were manufactured by the State Key
Laboratory of Frozen Soil Engineering, Cold and Arid
Regions Environmental and Engineering Research Institute,
CAS, and the precision is £0.05°C. All data were collected
using a Datataker 500 from Oct. 2003 to Dec. 2005.

Results and Analysis

Natural ground temperature changes

Figures 3 and 4 show the ground temperature changes
with time at different depths and with depth when the
thawing depth reached a maximum in the natural borehole. It
is found that the permafrost table was at 2.0 m and the mean
annual ground temperature was -2.35°C. It was also found
there were little or no changes in the permafrost table or in
the mean annual ground temperature. The air temperature
therefore had very little effect on ground temperatures
during the experimental years at the test site. So, we will not
consider the effect of air temperature on temperature regime
of embankment in following discussion.

Ground temperature changes under embankment with the
slope protection partially covered by soil

Figure 5 shows the ground temperature changes with time
at different depths and locations beneath the embankments.
Compared with the slope shoulders and toes of embankment,
it is found that the ground temperatures at the south shoulder

5.0 1040

\J\?pﬁ'k
oA

Depth /m
-ty
o
E:

—+—2004-10-30
—=—2005-10-29

Temperature /°C

Figure 4. Ground temperature changes with depth when the
thawing depth reached the maximum in the natural borehole
(DK 1082+600).

and toe of the embankment were above -2°C and clearly
higher than these under the north shoulder and toe. With
increasing time, the minimum ground temperature at 0.4 m
keeps slight increase, and under 0.4 m, they decrease slightly,
and the decreasing range of ground temperature was about
0.2°C-0.3°C. Under the north shoulder of the embankment,
the ground temperatures were about 1°C to -5.3°C. In
the course of time, they decreased considerably, and the
decreasing range of ground temperature is about 0.5°C to
1.1°C. Such developments would cause larger and larger
ground temperature difference between the south and north
slopes of the embankment and increase the potential instability
of the embankment. So, this method can be put away first.

Ground temperature changes under the embankment with
the slope protection fully covered by crushed rock

Figure 6 shows the typical ground temperature changes
with time at different depths and positions under the
embankments at DK1082+375. It can be seen that with
the slope fully covered with crushed rock, the ground
temperatures under embankment decrease noticeably, but
the rate of decrease of ground temperature under the south
side shoulder was less than that under the north side shoulder
ground temperature difference, particularly under the toe
of embankment. With increasing thickness of the crushed
rock layer, the ground temperature difference decreases
gradually under the south and north shoulders. Compared
with embankments DK1082+425 and DK1082+475, the
embankment structure with the thicknesses on the south/
north-faced slopes of 1.6 m/1.0 m (DK1082+475) is better
than the others. The difference exists mainly in the change
of minimum ground temperature. The maximum ground
temperature has no obvious relationship with thickness
of the crushed rock layer. For the embankments with
the thicknesses of crushed rock layer of 0.6 m and 1.0 m
(DK1082+375), 0.8 m and 1.3 m (DK1082+425), 1.0 m
and 1.6 m (DK1082+475), respectively, the differences in
the minimum ground temperature at different depths under
the south and north side shoulders were 1.29°C to 2.68°C,
0.98°Ct0 1.98°C, 0.90°C to 1.89°C, respectively. In addition,
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Figure 5 Ground temperature changes vs. time at different depths under embankment with the slope protection partially covered by soil

(DK 1082+775).
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Figure 6. Ground temperature changes vs. time at different depths under the embankment with the slope protection fully covered by crushed

rock (DK1082+375).
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Figure 7. Ground temperature changes vs. time at different depths under the embankment with the slope protection partially covered by

crushed rock (DK1082+675).

it is found that the minimum ground temperature in shallow
layers under embankment had larger ground temperature
differences than that in deeper layers.

Ground temperature changes under embankments with the
slope protections partially covered by crushed rock

Figure 7 shows typical ground temperature changes with
time at different depths and positions under the embankments
at DK1082+675. It can be seen that with the slope partially
covered by crushed rock, the ground temperature under the
embankment decreased noticeably. Compared with minimum
ground temperature, it was found that the rate of decrease
of ground temperature under the south shoulder was larger
than that under the north shoulder. The same was true for

the south and north toes. However, a ground temperature
difference still exists between the south-and north-facing
slope of the embankment, particularly under the shoulders of
the embankment. The ground temperature difference under
the south and north shoulder and toe decreased gradually
with time. Comparing with the ground temperature change
under the shoulders and toes at DK1082+675, +725, +825,
found that adjustment of the asymmetrical thermal regime
under the embankment structure is best with the widths
of the south/north-faced slopes of 4.0 m/6.0 m, using the
crushed rock size of 30 cm (DK1082+725). Second best
is the embankment with the widths of the south/north-
faced slopes of 4.0m/6.0m and the crushed rock size of
20 cm (DK1082+675). The embankment with the widths
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Table 2. Maximum thaw depth at the south and north shoulders of embankments.

P Height of Maximum Maximum Maximum
M01r1(1)t{(i)lr éng Location embankment | thawing depth | thawing depthin | thawing depth in Strucéurfel(typetof
P /m in 2003 /m 2004 /m 2005 /m embankmen
Ssglillgler 249 4.0 3.51 2.93
DK1082+375 North
ot 2.53 325 2.48 2.46
shoulder
s}i?l?lgler 2.59 4.0 3.41 3.82 Embankments with the
DK1082+425 North slopes fully covered by
sho(l)llder 2.71 3.6 3.33 3.29 crushed rock
sti?l?ltd}ter 2.76 4.0 3.66 3.36
DK1082+475 North
ort 2.81 35 2.62 3.00
shoulder
sti?l?ltd}ter 228 4.1 3.62 3.43
DK1082+675 North
ot 2.42 32 2.89 2.87
shoulder
outh 2.13 3.6 3.47 3.18 Embankments with the
DK1082+725 North slopes partially covered
sho(l)llder 2.36 3.5 3.32 2.90 by crushed rock
sfflﬁfir 2.80 5.1 4.77 4.4
DK1082+825 North
shoulder 2.72 3.8 3.5 3.35
sf(f’lﬁfir 2.04 4.1 3.85 3.54 Embankment with the
DK1082+775 North slope partially covered
shoulder 2.17 3.8 3.54 2.96 by soil

of the south/north-faced slopes of 3.0 m/5.0 m and the
crushed rock size of 10 cm is the worst (DK 1082+825). The
difference of the minimum ground temperature at different
depths under the south and north toe was 1.11°C to 1.27°C,
1.6°C to 2.26°C, 1.94°C to 3.2°C, respectively. In addition,
the minimum ground temperature in shallow layers under
embankment has larger ground temperature differences than
that at deep layers.

Discussion and Suggestions

In general, choice of good embankment structure must
consider both the ground temperature difference and the
maximum thawing depth (permafrost table) between the
south- and north-facing slopes of the embankments.

On the basis of observations, it is seen that except for the
embankments with slope protection partially covered with
soil, the other embankment structures achieved a certain
adjustment of the asymmetrical thermal regime.

Compared with the thickness and size change of crushed
rock, it is found that with full coverage using crushed rock,
the ground temperature difference decreased gradually with
increasing thickness of the crushed rock layer. For the slopes
partially covered with crushed rock, the adjusting effect
of the asymmetrical temperature distribution using larger
grain sizes is better than the others. But, a small change
in the thickness or grain size cannot completely adjust the
asymmetrical temperature distribution in this test. Based on

ground temperatures under the south and north shoulders,
the ground temperature with full coverage with crushed rock
under the south shoulder was lower than that using partial
coverage with crushed rock, and the ground temperature
of the partial coverage with crushed rock under the north
shoulder is lower than that using coverage with crushed
rock. For integrated effect of ground temperature regime, the
asymmetrical temperature distribution adjustment using full
coverage with crushed rock was better than partial coverage
with crushed rock.

Table 2 shows the changes in the maximum thawing depth
under the south and north shoulders for different monitoring
profiles. Except for the monitoring profiles of DK1082+425
(south shoulder), DK1082+475 (north shoulder), and
DK1082+825 (north shoulder) where the maximum thawing
depth decreased from 2003 to 2004 and increased from 2004
to 2005, the others decreased from 2003 to 2005. Through
in-situ investigation, we found that abnormal change of the
maximum thawing depth in DK1082+425 (south shoulder),
DK1082+475 (north shoulder), and DK1082+825 (north
shoulder) were caused by rainwater massed at the slope toe
of the embankment. The maximum thawing depth for full
coverage with crushed rock under the south shoulder is less
than that of using partial coverage with crushed rock, and the
maximum thawing depth for partial coverage with crushed
rock under the north shoulder is less than that of using full
coverage. Compared with the difference of the maximum
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Figure 8. Difference of the maximum thawing depth between the
south and north shoulder for different monitoring profiles in 2005.

thawing depth between the south and north shoulders in
2005, the differences at DK1082+475 and DK1082+725
are still less than the others, they are 0.36 m and 0.28 m,
respectively (shown in Fig.8).

In other words, the better embankment structures
for adjusting asymmetrical permafrost table were the
embankments with slope protection using partial coverage
with crushed rock with widths of the south/north-faced
slope of 4.0 m/6.0 m and a crushed rock size of 30 cm
(DK1082+725), as well as embankments with slope
protection using full coverage with crushed rock and
thickness of the south/north-facing slopes of 1.0 m/1.6m and
the crushed rock size of 10 cm (DK 1082+475).

Based on the above discussions, we can say that under
the conditions of our test sections, these methods can slowly
change the ground temperature regime but cannot absolutely
adjust the asymmetrical temperature distribution under the
embankments. In these testing programs the small change
in thickness and grain size of the crushed rock had only a
limited effect on adjusting and controlling the asymmetrical
temperature regime. After integrated considering of the
difference of ground temperature and the maximum thawing
depth under the north shoulders and toes of the embankment,
as well as economical cost, we suggest that the south-faced
slope is better fully covered by crushed rock with wider and
thicker structure. For the north-facing slope partial coverage
with crushed rock that is narrower and thinner is better.

The above conclusions were drawn only based on three
years of data and the lower temperature permafrost region;
the effect of the warming climate was not considered. At
present, we want to re-monitor these test sections and set
up some new monitoring profiles in the higher temperature
permafrost regions along the QTR and the Qinghai-Tibet
Highway, and hope some new results can be found.
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Abstract

It is well known that frost heave occurs in zones of thawed and non-anchored frost-susceptible soils under the effect
of buried chilled gas pipelines. This phenomenon is due (related) to the specific stress-strained state of freezing soils.
Simulation results revealed the following special features of the process: peak linear heave load increases with a
decrease in permeability and with an increase in soil freezing rate; peak linear heave load increases in the following
succession: sand—sandy loam—loam—clay; and peak linear heave load varies with time and achieves maximum values
during the first year of operation of a gas pipeline. Appropriate thermal insulation can eliminate frost heave entirely. The
technical decisions providing engineering protection are developed on the basis of soil thermal behavior simulations
and strain calculations. These decisions will ensure the stability of the planned pipeline embedding during the whole

operation period.

Keywords: buried pipeline; discontinuous permafrost; freezing rate; frost heave; heave load; stress-strained state;

permeability.

Introduction

It is well known that frost heave occurs in zones of thawed
(under ponds, lakes, bogs) non-anchored frozen soils under
the effect of chilled gas pipelines. This phenomenon is
related to the specific stress-strained state of freezing soils.
Estimation of the displacement of a buried pipeline as a
result of frost heave has been a problem because of the lack
of appropriate theoretical analysis.

The phenomenon of the frost heave of chilled pipelines
in unfrozen soils has been studied since the 1980s. The first
approximate theoretical analysis of this phenomenon was
undertaken by Grechishchev (1994). Experimental studies
of the frost heave of chilled buried pipelines under natural
conditions were carried out in France (Williams, 1986, 1989)
and Alaska (Akagawa et al. 2004, Kanie et al. 2004).

The calculation of the theoretical peak heave force has
remained the pri chilled pipeline on the surrounding soils,
the theoretical peak frost heave force applied to a chilled
pipeline, and the stress-strain state of the pipeline were
evaluated.

Computation procedure was as follows. First, the
anticipated thermal behavior of soil was estimated. Based
on the obtained thermal behavior parameters (soil freezing
above the pipe, soil freezing under the pipe, peak annual
freezing rate under the pipe), maximum possible frost heave
force applied to the chilled pipeline was estimated. Finally,
the obtained linear pull-out force values were applied to the
pipeline to estimate its stress-strained state.

Anticipated changes in the thermal conditions of soils
underlying the pipeline during construction and operation

periods were estimated using the specially developed
PROGNOZ software (RSN 67-87), providing a possibility to
make allowances for geological and geocryological section
heterogeneity, soil physical and thermal properties, and the
anthropogenic thermal effects. Mathematical simulation
in this software is achieved by enthalpy finite-difference
method on an explicit two-layer grid. Simulation was two-
dimensional.

The applied calculation method (10) provided a possibility
to estimate the values of normal heave forces applied to gas
pipe or the confining force to be applied to the pipe to ensure
its stability.

Software package Mathcad 2001 was developed for the
numerical solution of model equations.

The stress-strained state of the gas pipeline was estimated
using the Cosmos Works software based on the finite-element
method. Normal frost heave force value was assumed to
be equal to estimated heave load (shut-off pressure). Also,
gas pipeline actual operating pressure and the subsoil and
transmitted gas temperatures were assigned.

Initial Data

By way of a case study, given below are computation
results for Olekmisk conditions. The pipeline diameter is
1400 mm, the pipe center depth is 1.5 m, and the operating
pressure is assumed to be 10 MPa.

The frost heave of a buried chilled gas pipeline was
estimated for the case of discontinuous permafrost with a roof
foundering of 10 m and average annual soil temperature of
minus 0.1°C at the annual zero amplitude depth. Calculations
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Figure 1. Change of depth freezing downwards from a chilled gas
pipeline with time.

were performed for sand, loamy sand, loam and clay soils.
Calculations for the pipe-soil boundary were made for
transmitted gas temperature varying in time from minus
7.5°C in winter to minus 2°C in summer. The following
cases were studied: pipe without thermal covering and pipe
with a thermal covering with a thermal resistance to heat
transfer of 3.6 W/m>x°C (with reference to clay soil).

Results

Thermal behavior calculation results are illustrated by
Figure 1 and 2. The obtained data suggest that freezing depth
(Fig. 1) and rate (Fig. 2) increase in the following succession:
clay—loam—sandy loam—sand.

Peak linear heave load as a function of freezing rate is
shown in Figure 3. As obvious from the figure, peak linear
load value varies with time and is the highest during the first
year of the gas pipeline operation period.

Data shown in Figure 3 also demonstrate the increase in
peak linear heave load with an increasing soil freezing rate.

Peak heaving load as a function of soil permeability
is shown in Figure 4. Analysis of data shown in Figure 4
suggests that the effect of soil permeability on linear heave
load value is significant. Linear load value increases with a
decrease in permeability.

Analysis of calculation results (Figs. 3 and 4) suggests that
peak linear heave load increases in the following succession:
sand-sandy loam—loam—clay.
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Figure 2. Change of freezing rate with time.

The stress-strained state of pipeline under the estimated
peak heaving load was estimated. Pipeline heave buckling
(displacement), in this case, may be as large as 0.5 m.

Heat isolation restricts subsoil freezing. Heat isolation
with a thermal resistance to heat transfer of 3.6 W/m?x°C
eliminates soil freezing under the pipeline completely.
It follows that it is possible to select isolation thickness
sufficient for the complete elimination of pipeline heave
buckling.

Based on calculation results, engineering solutions can
be worked out for stabilizing the planned chilled buried
pipeline position: application of a heat insulation cover with
a thickness determined by special calculations; application
of ice-and-soil supports or chemically stabilized soils with
screw-in anchors, to which pipeline is fastened by special
heavy-duty belts. The calculated linear heave load values
shall be borne by these anchors.

Conclusions

1. Simulation data analysis has revealed the following
tendencies of the process: Peak linear heave load grows
with a decrease in permeability and with an increase in soil
freezing rate; peak linear heave load increases in the following
succession: sand—sandy loam—loam—clay; and peak linear
heave load varies with time and achieves maximum values
during the first year of a gas pipeline operation period.

2. Integrated predictive estimation of the thermal and
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Figure 3. Variation of peak heaving load and freezing rate.

strain behavior of soils at the early stage of project designing
provides the opportunity to identify and recommend the
optimum temperatures of the piped product to minimize
the thermal effect on the subsoil. At later stages of project
designing (project design, detailed engineering), engineering
protection solutions are developed on the basis of thermal
behavior modeling and strain computation to ensure the
stabilization of the planned pipeline position during the
whole operation period.
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Abstract

Yana basin was analyzed to understand the hydrology of the catchment, since it is situated in a continuous permafrost
region with minimal human impact. The discharge analysis revealed the typical permafrost laid hydrograph with peak
summer flood in June and minimum flow from November to April. Temperature and precipitation did not show any
significant trend over 70 years. Statistical analysis showed a mixed trend for the stations examined, but there is no
significant trend observed for winter months. There is a relationship between snow water equivalent and discharge,
but further examination is needed to document the relation. Overall, a better understanding of hydrology was gained

through this analysis.

Keywords: hydrology; permafrost; snow water equivalent; Yana.

Introduction

Rivers provide a vital link by integrating, spatially as well
as temporally, atmospheric and land surface processes at
catchment level, thereby providing a mechanism to detect
climate change (Déry et al. 2005).

Significant changes have been observed in the large arctic
river basins. For instance, Ye et al. (2003) and Yang et al.
(2004) found Lena and Yenisei River discharges increase
during the winter months and shift in peak discharge timing
in Siberia mostly due to reservoir regulation. Small coastal
rivers with no regulation and scarce population density
provide an ideal medium to understand the effect of climatic
variation on streamflow.

The emphasis of this research is to gain a better
understanding of various parameters which affect the
unregulated Yana River basin in Eastern Siberia. The basin
was chosen for this analysis, since it is a non-regulated mid
sized watershed, and streamflow response to snowmelt is
direct without reservoir interference or other anthropogenic
activities. This analysis will enhance our knowledge of
discharge response to changes in precipitation, temperature
and snow cover.

Study area, data, and method

The Yana basin is one of the large rivers in northeast Asia
with a basin area of 238,000 km?. The river flows north
for 879 km, passing through subarctic and arctic region,
and finally discharges into the Laptev Sea at 72°N .The
Yana River lies between the East Siberian lowland and the
Verkhoyano range. In the lowlands the elevation does not
exceed 150 m. The climate in this region is continental.
Precipitation ranges from 200—400 mm/year in the lowlands
to 400-500 mm/year on the ridges. Continuous permafrost
with infrequent taliks as well as widely developed taliks
occurs everywhere.

Hydrological observations in the Siberian regions, such as

discharge, stream water temperature, river-ice thickness, and
dates of river freeze-up and break-up, have been carried out
since the mid 1930s by the Russian Hydro Meteorological
Services (Shiklomanov et al. 2000). The discharge data are
now available from the R-Arctic Net (v.3.)-(www.r-arcticnet.
sr.unh.edu/main.html) online.

In addition, subbasin mean monthly temperature and
precipitation were obtained from University of New
Hampshire (http://rims.unh.edu) along with the Special
Sensor Microwave/Imager (SSM/I), remote sensing snow
water equivalent data (SWE). As part of our preliminary
analysis we defined the natural climatic variation through
temperature and precipitation interannual variability, mean,
standard deviation, and linear trend. Second, we analyzed
monthly and annual discharge records along the main stream
to quantify discharge change. Third, we compared snow
water equivalent, precipitation, temperature, and discharge
as a function of time to assess their relationship.

Result and Discussion

Climate-hydrology

Annual temperature during 1930-2000 ranged from -16°C
to-12°C; the cold temperature is characteristic of aregion with
continuous permafrost (Fig. 1). The basin is characterized
by a long cold season of eight months, with temperatures
ranging from -10°C in September to around -2.5°C in May.
The brief warm season has a temperature range of 9°C in
June to 3°C in August, with July being the warmest month
(mean temperature of 13°C). The coldest month is January
with a mean monthly temperature of -40°C.

Mean annual precipitation over the basin ranges from
145 mm to 300 mm, with an average value of 220 mm (Fig.
1). There is minimal precipitation ranging around 5 mm in
January, February, and March. Peak precipitation is in the
months of July and August with an average rain depth of
45 mm. Monthly mean value of precipitation for September,
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Figure 1. Interannual variability for temperature and precipitation
at Yana basin from 1930-2004.

October, November, and December are 25 mm, 15 mm, 10
mm, and 7 mm.

Temperature and precipitation interannual variability
(standard deviation) did not show any significant upward
trend from 1930-2000. The highs and lows of precipitation
and temperature show consistency, indicating with higher
annual temperature there is higher annual precipitation. To
understand the basin hydrology, annual flow, monthly flow
and variation (standard deviation) and trend are analyzed

It was found that basin discharge is typical of continuous
permafrost region (Kane 1997) with peak flow in June and
low flow dominating from October to April. Trend analysis
shows mixed results for all the stations, but negligible or no
change is observed during the cold season from October to
April.

Discharge, temperature, precipitation, and Special Sensor
Microwave/Imager (SSMI1) SWE analysis

The discharge regime at the outlet shows interannual
variation from 1600 m3/s to 800 m?/s with a tendency towards
decreasing trend from 1988-2000 (Fig. 2). The variation in
monthly streamflow is generally small for the cold season
(October to April) and large in summer months, mainly due
to floods associated with snowmelt and storm activities.

Correlation between temperature and discharge was
examined to understand the effect of higher or lower
temperature fluctuation on mean discharge. Statistical
analysis of annual mean discharge at the basin outlet and
temperature annual mean showed a positive correlation (R
= 0.30). There is no consistent relationship for warm and
cold season for zero time lag, which could be due to no flow
for most of the cold season in the Yana basin (Fig. 3). The
only statistically significant month was May with a strong
positive correlation (R = 0.48). Yang et al. (2002), observed a
similar relationship for Lena basin, emphasizing that higher
temperature in May will lead to larger snowmelt floods.
This relationship shows that during transition period, as the
watershed warms up, snow cover disappears and evaporation
starts to dominate (Yang et al. 2002). Since this is a smaller
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Figure 2. Interannual variability for discharge at Yana basin from
1976-2006.
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Figure 3. Discharge (¢) and temperature () comparison from May
to September with no lag.

basin compared to other large Siberian rivers, even one
month lag does not show any significant relationship except
a high positive correlation between November to December
(R =0.47); that is, higher temperature in November leads to
more discharge in December.

Statistical analysis for correlation between precipitation
and discharge showed a positive relationship for interannual
comparison (R =0.24), indicating that some years with higher
precipitation showed higher average discharge. The winter
months of January (R = 0.43) and March (R = -0.32) showed
a negative relationship for zero lag, and other months from
October to April showed no significant relationship. This
could be because cold months are characterized by snow
cover accumulation, and discharge is mostly base flow or no
flow (Yang et al. 2002).

Discharge and SWE follow an inverse relationship, with
the advent of snowmelt at about day 86 (last week of March),
and it finally disappears at day 150 day around the last week
of May on average (Fig. 5). The discharge subsequently
peaks on day 160. This is typical of arctic regions underlain
with continuous permafrost. The time series of discharge and
snow water equivalent emphasizes the inverse relationship.
High value of snow water equivalent does not always lead to
high peak discharge; this could be due to different ablation
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Figure 5. Daily mean discharge and SWE relationship.

rates, which are variable from year to year. We calculated
the ablation rate around mid May to the first week of June
and it varies from as low as 2 mm/day to as high as 16 mm/
day at the start of snowmelt; the rates change with increase
in temperature.

Highest daily value of SWE and discharge are compared,
and their relationship (Fig. 6) follows a Gaussian curve.
Increase in discharge is associated with increase in snow
water equivalent (SWE), but there are some discrepancies
for some years.

There is a lot of missing data for some years, and the mean
value could be shifted to the month of August resulting
in a lower peak. On looking at mean monthly maximum
discharge in June and mean maximum SWE in March, the
relationship is more linear with two outliers at the high end
of SWE, which is similar to the daily maximum SWE and
discharge relationship. The result indicates that on average,
a year of higher precipitation in winter will lead to higher
peak discharge.

The dates for maximum snow and discharge for each year
are analyzed (Fig. 7), and no major change or shift is found
in the timing of peak discharge and maximum snow water
equivalent.

Conclusion

Significant changes have been observed in the large arctic
river basins. For instance, Ye et al. (2003) and Yang et al.
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Figure 7 Monthly maximum discharge and SWE relationship.

(2004) found Lena and Yenisei River discharges increase
during the winter months and shift in peak discharge timing
in Siberia mostly due to reservoir regulation. In our study
of the Kolyma basin, we also found significant increase in
winter discharge by as much as 522%-3157% downstream
of the dam from December to April (Majhi et al. in press).
Our results indicate that the Yana basin does not show any
significant change in discharge.

Temperature and precipitation interannual variability
(standard deviation) did not show any significant upward
trend from 1930-2000. The peaks and lows of precipitation
and temperature show consistency, indicating with higher
annual temperature there is higher annual precipitation. Most
of the precipitation falls in the summer months from June to
September. Temperature shows a basin high of around 15°C
in summer and a low of -40°C in January. Basin discharge
is typical of continuous permafrost region with peak flow
in June and low flow dominating from October to April.
Trend analysis shows mixed results for all the stations, but
negligible or no change is observed during the cold season
from October to April.

The only statistically significant month for temperature
and discharge was May with a strong positive correlation
. Yang et al (2002), observed a similar relationship for the
Lena basin, emphasizing that higher temperature in May
will lead to larger snowmelt floods. Correlation between
precipitation and discharge showed a positive relationship
for interannual comparison, indicating that some years with
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higher precipitation showed higher average discharge. The
winter months of January and March showed a negative
relationship for zero lag, and other months from October to
April showed no significant relationship, while there was
significant relationship from June to September for no lag.
This could be due to quick response of discharge to rain
events, since the Yana is comparatively a medium-sized
basin.

Overall there is a need to better understand discharge
dynamics to further the hydrological cycle and its
implications. Monitoring snow pack variability for the arctic
region has implications in the context of global change, since
it is fundamental to estimate the change in freshwater flux.
Moreover, changes in snow depth and timing alter the surface
albedo, resulting in feedbacks at both regional and global
scale. The analysis reported may be very useful in improving
the snow and discharge relationship in hydrological models.
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Abstract

To understand better the formation and history of petroleum gas hydrates in terrestrial permafrost regions, we have
performed numerical temperature profile modeling in response to surface forcing due to both the glacial-interglacial
history and future climate change, where atmospheric CO, has doubled due to climate change. The models are
constrained by heat flow from deep wells, thermal conductivity, latent heat, and the observed permafrost and gas hydrate
thicknesses. The models consider the pressure—depth dependence of ice and gas hydrate thawing points over the entire
gas hydrate and permafrost intervals, in contrast to previous models that considered only a thin layer using a constant
dissociation temperature. In areas of thick permafrost, results show that a thinned gas hydrate layer persisted through
previous interglacials, and that future warming before the “natural” end of the current interglacial will not destabilize
the gas hydrate layer significantly. Therefore, present changes in temperature gradient reflect transient conditions, and
they should not be used to derive thermal conductivity in permafrost regions using a constant heat flow assumption.
We also find that the ratio of temperature gradients within and below the permafrost has very little to do with the
thermal conductivity ratio of the permafrost, although this is less appropriate in the sub-permafrost layers due to the
buffering effects of overlying ice-bearing permafrost. Models with unfrozen-frozen thermal conductivities of 2.4-3.6
W/(m.K), and with an unfrozen-frozen conductivity ratio of 2.1-3.4 W/(m.K), (that is, very similar conductivity ratios

1:1.5 and 1:1.6) give dramatically different thermal gradient ratios 1:5.4 and 1:2.9, respectively.

Keywords: climate change; gas hydrate; latent heat; permafrost.

Introduction

Tounderstand better the formation and history of petroleum
gas hydrates (GHs) in terrestrial permafrost regions, we have
performed numerical modeling of the surface forcing due to
both glacial-interglacial history and future climate change.
Persistent GH layers in a terrestrial environment of thick
permafrost in cold regions sequester methane and impede
its migration into the atmosphere. The Mallik site in the
Mackenzie Delta (MD) is an excellent example of such GH
deposits (Dallimore & Collett 2005, Smith & Judge 1995,
Judge et al. 1994, Judge & Majorowicz 1992). We examine
this hypothesis by modeling terrestrial MD GH thickness
variations below an ice-bearing permafrost (IBP) layer in
response to past and future surface temperature changes,
using a 1D thermal model that assumes no water or gas
flow. Past surface forcing uses a detailed Holocene glacial-
interglacial history compiled from other sources (Taylor et
al. 2005). We also consider the implications of a warmer
future based on a doubling of atmospheric CO, resulting in a
local mean surface temperature increase of 2°C /100 yrs.

Method

Solving the transient heat conduction equation gives the
temporally dependent subsurface temperature change in
response to surface forcing:

C oT/ot = o[K(2T/0z)]/oz + A (1)

where T is the temperature, K is the thermal conductivity,
C, is the volumetric heat capacity, 4 is the rate of heat
generation per unit volume, z is the depth, and ¢ is the
time in a one-dimensional layered geothermal model. We
employed a computer code to simulated temporal subsurface
temperature changes in response to surface forcing (Safanda
et al. 2004). Within the model, Equation 1 is solved
numerically by an implicit finite-difference method similar
to that described by Galushkin (1997). The upper boundary
condition is the temporally varying surface temperature, and
the lower boundary condition is a constant heat flow density
at 15 km depth. The depth grid steps are: 2, 5, 10, 50, 100,
250, and 500 m deep; model layers are defined between:
0-100, 100-1500, 1500-2000, 2000-2500, 2500-5000,
5000-10,000, and 10,000—15,000 m deep. Time steps vary
between 0.5 yr to 50 yr, depending on the amplitude of
surface temperature changes.

The finite-difference scheme of Equation 1 on the depth
and time grids, together with the upper and lower boundary
conditions, leads to a system of difference equations for
unknown values T, ™', T, T _ ™' (where the subscript k
and the superscript # denote a value at the k-depth step and the
n-th time step) within a tri-diagonal matrix, which was solved
by the forward method (Peaceman & Rachford 1955).
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Figure 1. Depth to GH base of Type I stability in the BMB based
on the interpretation of measured temperature logs, bottom hole
temperature data (Fig. 2) and T-z calculations (modified from
Majorowicz and Hannigan 2000) that are constrained additionally
by both deep heat flow and base of the IBP. Modelling undertaken
here is for northern Richards Island (near centre of figure).

To estimate effective thermal conductivity values and
volumetric heat capacity, it was necessary to consider
the respective geometric and arithmetic averages of the
constituent values for the rock matrix, water, ice, and GH
in proportion to their volumetric fractions (Galushkin
1997, Nixon 1986). A consumption or release of the latent
heat, L, in water/ice (334 kl.kg') and GH (430 kJ.kg™")
accompanying either thawing or freezing was included. The
effects of interstitial ice and GH were accounted for using
apparent heat capacity (Carslaw & Jaeger 1959), when the
volumetric heat capacity is increased in the depth sections
of the model where the thawing and freezing occurs; that is,
where the temperature is within the thawing range between
the temperature of solidus 7, and liquidus, 7, at the actual
simulation time step.

The liquidus and solidus temperatures of water/ice and
GH are depth and hydrostatic pressure dependent (Galushkin
1997) and solidus temperatures were 0.2°C lower than
liquidus temperatures. A contribution to the heat capacity
from the latent heat = p@L/(T,-T,) was considered, where p
is the density of either ice or GH, and @ is a fraction of the
total volume occupied by these phases. In the IBP zone, we
infer the 30% rock matrix porosity to be fully occupied by
water at temperatures above 7, and by ice at temperatures
below 7. Within the GH stability zone, the GH saturation
in matrix porosity was inferred to be 60%. For the model
to be tractable, the model IBP and GH stability zones are
assumed not to overlap, which follows common observation
in the study area that GHs are not generally found within the
IBP (Dallimore & Collett 2005). The salt concentration 9
g/L was considered constant with depth, and the p-T phase
curves were adjusted to this value.

Numerical code performance was tested by comparing
model results against the analytical solidification problem
solution (Carslaw & Jaeger 1959), where the molten half-

Northern Corridor well temperatures
from precise logs
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Figure 2. Example of temperature-depth profiles vs. the equilibrium
GH stability curve. Examples of precise logs observed in wells
years after the end of the drilling disturbance are from Taylor et
al. (1982).

space at liquidus temperature, 1300°C, is in contact with a
solid half-space at zero temperature and releases the latent
heat of 477 kJkg™! in the temperature range 1100°C—1300°C.
Comparison of the differences between the numerical and
analytical temperature profiles found them to be within about
20°C. If we assume that the magnitude of the difference is
proportional to the temperature range, that is, to the contrast
at the contact of the molten and solid half-spaces, the error
expected for the IBP and GH numerical simulations should
be about 100 times smaller (i.¢., tenths of a °C) because of the
scale of both the temperature range and surface temperature
variations that are used in our simulations. A similar error
range was estimated by halving the time and/or depth steps.

Our model uses deep heat flow, thermal conductivity,
present IBP and Type I GH thicknesses, and a surface
melting temperature (-0.576°C) that considers groundwater
salinities (9 g/L). It employs latent heat effects throughout
the IBP and GH layers, which improves upon previous
models (e.g., Taylor et al. 2005). The models are constrained
by deep heat flow from bottom hole temperatures in deep
wells (Majorowicz et al. 1990) and thermal conductivity,
latent heat, present IBP thickness, and present Type I GH
thicknesses (Henniges et al. 2005). The models consider
the pressure—depth dependence of ice assuming hydrostatic
(e.g., Lachenbruch et al. 1982) and GH thawing points over
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Figure 3. Simple test results of glacial-interglacial surface forcing
upon permafrost and GH (Models 1-3 are described in the text).
(Time scale shown is 600 ka. Dotted lines show the present base
of permafrost and GH. Glacial-interglacial timing and temperature
magnitudes are based on Muller & MacDonald (2000) and Taylor
et al. (2005).

the entire expected extent of the IBP and GH layers (Sloan
1998). Previously published models have considered only a
thin layer using a constant dissociation temperature (Taylor
et al. 2005).

Current Gas Hydrate Stability Zone

The GH stability zone is currently widespread both in
the onshore and offshore BMB, especially to the east of
Mackenzie Bay (Fig. 1). There the GH stability zone base
reaches 1.5 km deep, where the IBP is thick and the heat
flow is low (Figs. 1, 2).

Modeling Results

We have simulated the downward propagation of the
surface warming and cooling attending the cyclical glacial
and interglacial models for a Richards Island location (Fig.
1). The dependence of the thermal conductivity on water/
ice content and the specific heat of the rock section on the
porosity and the proportion of interstitial water and ice
are important. Accounting for the effect of the latent heat
necessary to thaw the interstitial ice in the IBP layer is
crucial for matching observations at realistic time rates. In
the absence of this heat sink provided by thawing ice in the
IBP, the subsurface warming would proceed much faster.

Models of the past history of permafrost and GH layers
Individual computational models use the characteristics
of IBP and GH formation and dissipation as functions of
temperature history, constrained by present temperature
observations and current IBP and GH layer thicknesses. The
surface climate history for the end of the Wisconsinan and
Holocene is after Fig. 3b in Taylor et al. (2005); Pleistocene
surface history of glacials and interglacials is after Muller and
MacDonald (2000). Forward modeling of the past history for
the IBP and GH layers on Richard’s Island in the vicinity of
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Figure 4. The heat flow and depth profiles for different phases of
the glacial cycle for Model 1.

the Mallik well (Dallimore et al. 1999, Dallimore & Collett
2005) can be calibrated against present-day observed IBP
and GH zones, which have bases at about 600 m and about
1100 m, respectively.

The numerical solution of the transient heat conduction
equation (eq. 1) was applied to model time vs. temperature,
depth, IBP characteristics using latent heat effects (Galushkin
1997). This new model employs the pressure—depth
dependence of ice and GH thawing points and considers
latent heat effects in subsurface heat transport modeling and
their impact on paleo-temperature reconstructions across
the entire GH layer and not just its boundaries. All models
account for latent heat by means of the apparent specific
heat, which is a standard treatment. The model also considers
diffusive heat flow related to surface-subsurface coupling.

Figure 3 shows three models of the surface temperature
forcing effect on IBP and GHs, which currently have
observed bases at about 600 m and about 1160-1170 m,
respectively:

Model 1 is a simple test of glacial-interglacial forcing
upon IBP and GH layers, where the GH zone is constrained
to be 900 m deep or deeper. Results show that the model
base of IBP and GH is much deeper than the currently
observed values, despite a high heat flow value of 60 mW/
m? (Majorowicz et al. 1990, Henniges et al. 2005). We infer
that the frozen IBP conductivity, 3.6 W/(m.K), is lower than
that used in this model, which is based on a measured GH
layer conductivity of 2.4 W/(m.K), where the pore space of
30% is filled with water and adjusted using the geometric
mean to the pore space filled with water ice. We considered
glacial-interglacial cycle lengths of 115 ka, of which 90 ka
are glacial and 25 ka are interglacial. The present day is
13.5 ka after the last glacial interval. In Model 1, the mean
temperature during glacial intervals was -17°C (Allen et al.
1988) and the mean temperature during interglacials was
-4°C, which is slightly higher than the present -6.5°C at the
Mallik site.

Model 2, like Model 1, considers the climatic history
proposed by Taylor et al. (2005, Fig. 3b). We note that in
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Figure 5. Thermal gradient for the frozen-unfrozen system vs.
thermal conductivity ratio (Models 1 vs. 3).

Model 2 the base of both the IBP and the GH layers occurs
~100 m shallower than that calculated by Model 1, mainly
due to higher average temperatures during glacial intervals
(-15°C, rather than -17°C). In Model 2 the predicted current
base of IBP, 13.5 ka after the onset of Holocene warming, is
657 m (-1.04°C) while the base of the GH layer is 1262 m
(13.45°C), both of which are slightly too deep for observed
values (Fig. 3).

Model 3 is a model that employs a surface warming like
that of Model 2. However, Model 3 employs a frozen-thawed
conductivity varying from 3.4 (frozen) to 2.1 (unfrozen)
W/(m-K) compared with 3.6 (frozen) to 2.4 (unfrozen) W/
(m-K) used in Models 1 and 2. This results in an appreciable
improvement of the fit to observations. Figure 7 illustrates
the position of the current base of the IBP. The calculated
present base of IBP is very close to the observed depth of
600 m and the GH layer base is at ~1.17 km (Fig. 3).

All the models indicate generally similar thickness
variations of the IBP and GH layers during glacial-interglacial
cycles. Both the IBP and GH layers increase in thickness
during glacial intervals and decrease in thickness during
interglacial intervals. For Model 3 these variations are about
190 m for the IBP and about 80—90 m for the GH layer.

Model 2 predicts that the base of both IBP and GH layers
are 100 m higher than those predicted in Model 1, mainly
due to a higher average temperature mainly due to assumed
warmer glacial, -15°C instead of -17°C. Yet, the predicted
current IBP and GH layer bases were still slightly deeper
than observed values. Model 3 improves the fit between
the observed and predicted current IBP and GH layer
characteristics as a result of changes to the frozen-thawed
conductivities resulting in an appreciably improved fit to
observed values. Today, 13.5 ka after the end of the last
glacial interval, Model 3 predictions are very close to the
observed IBP base (600 m) while the predicted current base
of the GH layer is just slightly deeper (1160-1170 m) than
the observed depth (1100 m).

Models of IBP and GH layer characteristics that are based
on historical surface temperature forcing are both robust
and informative. The predicted heat flow-depth profiles for
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Figure 6. Consequences of the global climate change model that
considers 6°C gradual warming projected 300 years into the future.
Present time is marked by a green line.

Model 1 (Fig. 4) illustrate the different phases of the glacial
cycle (Fig. 3, Model 1). For example, at 10 ka after the
onset of the glacial interval, the base of the IBP, at 700 m,
is moving downward, with an attendant heat release, while
simultaneously the base of the GH, at 1350 m, is moving
upward and consuming heat. The thermal inertia impact on
sub-permafrost GH layer thinning is delayed and responsive
to surface forcing, rather than leading and causative, due to
the buffering effect of the overlying permafrost layer.

Models indicate that heat flow at depths above 1.5 km is in
a transient state. Heat flow below that depth is stable, within
the measurement error. The simple glacial-interglacial model
also indicates that the ratio of temperature gradients within
and below the IBP has very little to do with the conductivity
ratio of the permafrost and sub-permafrost layers, such that
even current temperature profiles are transient. Models with
an unfrozen-frozen conductivity ratio = 2.4/3.6 W/(m.K),
and models with an unfrozen-frozen conductivity ratio =
2.1/3.4 W/(m.K) give very similar conductivity ratios 1:1.5
and 1:1.6, but are characterized by dramatically different
thermal gradient ratios: 1:5.4 and 1:2.9 (Fig. 5).

Below the buffering effects of the IBP the estimated
conductivity, K, in the GH zone (Wright et al. 2005;
Henninges et al. 2005) is based on both temperature
gradients from a precise temperature profile (Henninges et
al. 2005) and the deep heat flow, Q = 60 mW/m? (Majorowicz
& Smith 1999). The estimates employ the equation:

Q/GradT=K 2)

This is a correct assumption for steady state situations
only, such as non-ice bearing permafrost areas with constant
surface 7. The resulting conductivity estimates are correct
below the IBP, within the heat flow measurement error of
10%—15%, (Fig. 4).

The impact of future warming
Surface  temperature  will change dramatically
accompanying the projected doubling of atmospheric CO,
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Figure 7. T-z profile corresponding to the expected future warming
since present warming by a rate of 2°C/century from -6°C to 0°C.

resulting in future climate warming during the next 300
years. We predict the consequences of such a mean surface
temperature change, from -6°C to 0°C, considering past
history followed by gradual warming, at a rate of 2°C per
century. The future predictions are shown in Figures 6 and 7.
Hypothesizing a time corresponding to the “natural” end of
this interglacial about 11.5 ka in the future, the model predicts
that the IBP will have thawed by ~150 m from below and
70-80 m from the surface. The predicted accompanying GH
layer thinning is very small and within the range of previous
natural cycle variations (Fig. 3), in spite of the accelerated
surface warming accompanying climate change.

Conclusions

Model results that consider latent heat effects of water/ice
and GH formation and dissipation show that:

1. Historical and future surface temperature forcing
implications for both IBP and GHs can be modeled
successfully using available Pleistocene glacial-interglacial
and Holocene surface temperature histories. Model GH
layer thickness generally increases during colder intervals
(i.e., glacial) and decreases during warmer intervals (i.e.,
interglacial). For Model 3, which most closely resembles
observed values, these variations are ~190 m for the IBP
and about 80-90 m for the GH layer. Where the IBP layer
is thick it is unlikely that sub-permafrost GHs disappeared
entirely during previous interglacial intervals, nor are they
expected to disappear prior to the “natural” end of the current
interglacial. In regions of thick terrestrial permafrost like the
Mackenzie Delta, GH layers can act as a persistent sink for
and barrier to the migration of methane.

2.Models that consider the consequences of current climate
warming trends indicate that, when the current interglacial
interval ends “naturally” ~11.5 ka from now, the study area
IBP will have thawed ~150 m from below and 70—80 m from
the top. The attending GH disassociation inferred is very
small and comparable to that of model natural variations
accompanying preceding glacial-interglacial cycles.

3. Temperature gradient ratios within the IBP are not
strongly dependent on the conductivity ratio between
permafrost and sub-permafrost layers, as the current
temperature profile is a transient one. A model with an
unfrozen-frozen conductivity of 2.4-3.6 W/(m.K) and a
model with an unfrozen-frozen conductivity ratio 2.1-3.4
W/(m.K) result in very similar conductivity ratios, 1:1.5 and
1:1.6, but these two alternatives have dramatically different
thermal gradient ratios of 1:5.4 and 1:2.9, respectively.

4. The hypothesis that links sudden glacial terminations to
major methane emissions from large, rapid GH destabilization
events (Nisbet 1990, 2002, Kennett et al. 2003) presumes
that GHs destabilize rapidly in response to environmental
change late in glacial intervals, and that they serve at other
times as a sink for and barrier to the migration of methane
into the atmosphere. This hypothesis applies mainly to
marine GHs, which may be more easily destabilized than are
the terrestrial sub-permafrost GHs we modeled.

Our study shows that terrestrial GHs below thick IBP
vary in thickness in response to surface temperature history
changes, but that terrestrial thermal inertia conserves both
IBP and sub-permafrost GHs delaying and reducing methane
release. Terrestrial thermal inertia also imposes a phase-delay
between surface temperature warming and the subsequent
onset of GH dissociation, making it unlikely that terrestrial
GHs below thick permafrost could rapidly reinforce climate
warming events, consistent with the hypothesis. The
implications of latent heat effects and thermal inertia for
submarine gas hydrates remain to be determined; however,
our model results appear consistent with recent observations
of methane isotopic compositions from ice cores (Sowers et
al. 20006).
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Abstract

The 24-year-long permafrost temperature records from the long-term permafrost monitoring station Bolvansky are
presented in this paper and analyzed in relation to climatic changes. The results of this analysis show that changes in
mean annual ground temperatures generally follow the mean annual air temperatures. The warming trend in the air
temperatures for the entire period of measurement at this site is 0.04°C/yr. Observed trends in mean annual permafrost
temperatures vary from 0.003°C/yr to 0.02°C/yr in different natural landscapes. The warming trend in permafrost
temperature for the entire period of measurement in anthropogenic landscapes is 0.04°C/year. A weak negative trend
is observed in thawed boreholes (-0.012°C/year). For the last 10 years, an increase in climatic variability and an
interchange of extremely cold and extremely warm years were observed, that led at first to a considerable increase in
permafrost temperature. In 2007, a weak decrease in temperature was observed in most of the monitored boreholes.

Keywords: air temperature; climate change; permafrost temperature; thermal monitoring; trend.

Introduction

The geocryological observations show a general increase
in permafrost temperatures during the last several decades
in Alaska (Clow & Urban 2003, Osterkamp & Romanovsky
1999, Osterkamp 2003, Romanovsky 2006, Romanovsky et
al. 2002) and northwest Canada (Smith et al. 2005, Burgess &
Smith 2003). At some locations near the southern boundary
of permafrost in Alaska, this warming has already resulted
in permafrost thawing from the top down (Jorgenson et al.
2001, Osterkamp et al. 2000).

The cryolithozone of the European part of Russia extends
predominantly just north of the Arctic Circle. Permafrost
in this region is well studied. During the 1970s and 1980s,
due to oil and gas field exploration and development, many
drilling and geophysical surveys were carried out in the
European North. State engineering-geological mapping
(1:200,000 scale) was also accomplished. These activities
provided important information on permafrost extent,
thickness, and temperature regime. In order to investigate in
detail the geocryological conditions of this region, several
long-term permafrost-monitoring stations were established,
in both natural settings and in settings disturbed by human
activities. During the 1980s, there were 14 geocryological
long-term monitoring stations where the ground temperature
was measured in several dozens of boreholes. During the
last ten years, the development of oil and gas fields in the
European North has progressed rapidly. The building of
oil-shipping terminals was accomplished in the coastal
zone of the Barents Sea and Pechora Bay (Varandey et al.).
With all these developments, current data on changes in
geocryological conditions have turned out to be insufficient.
Today, regular temperature measurements in boreholes are
carried out only at Vorkutinsky and Bolvansky long-term
monitoring stations. In 2006 and 2007, after an 11-year
time gap, permafrost temperature measurements were

conducted successfully in several reference boreholes at
two more former long-term monitoring stations, Rogovoy
and Korotaikha. Results of these geocryological studies are
cited in the scientific literature (Kakunov & Sulimova 2005,
Kakunov et al. 2006, Oberman 1998, 2001